
Submitted to:
SYNT 2016

© M.B.S. Ahmad, A. Cheung

Leveraging Parallel Data Processing Frameworks with
Verified Lifting

Maaz Bin Safeer Ahmad
University of Washington

maazsaf@cs.washington.edu

Alvin Cheung
University of Washington

akcheung@cs.washington.edu

Many parallel data frameworks have been proposed in recent years to enable sequential programs
leverage parallel processing. Unfortunately, to utilize the benefits of such frameworks, existing code
often needs to be rewritten to the domain-specific languages that are supported by different frame-
works. This rewriting process is tedious and error-prone, and even if developers are willing to invest
resources in rewriting, they still face the problem of choosing which framework to use, as each
framework delivers different amounts of performance improvement depending on the workload.

In this paper, we describe CASPER, a new compiler that automatically retargets sequential code
written in Java to be executed on Hadoop, a parallel data framework that implements the Map-Reduce
paradigm. Given a sequential code fragment, CASPER uses verified lifting to infer a high-level
summary expressed using a logic specification language. The inferred summary is then compiled to
be executed on Hadoop. The entire process is completely automated. We demonstrate that CASPER
can automatically translate a set of Java benchmarks into Hadoop, and the translated results can
execute on average 3.3× faster when compared to the sequential implementation.

1 Introduction

More data is being collected today than ever before. Computing has become more ubiquitous, storage is
cheaper and better data collection tools are available. Both of these phenomena have become evident in
various scientific domains where advances are increasingly data-driven. As such, effectively analyzing
and processing huge datasets is one of the major computational challenges that we currently face.

Over the past decade, many parallel data-processing frameworks have been developed to handle very
large datasets [2, 5, 6, 8, 11] and new ones continue to be released every few months [1, 11, 21]. Most
parallel data-processing frameworks come with domain-specific optimizations that are exposed either
via library APIs [1,2,5,6,8,21], or via high-level domain-specific languages (DSLs) for users to express
their computations [11, 15]. The idea is that if the computation can be expressed using such API calls
or DSLs, then the resulting computation will be made efficient, thanks to the specialized optimization
offered by the frameworks [3, 15, 19, 20].

Unfortunately, there are a number of issues with this approach, making many of these domain-
specific frameworks inaccessible to non-expert users such as domain scientists and researchers. First,
with so many frameworks available, each offering domain-specific optimizations for different work-
loads, it requires an expert to decide up front which framework is the most appropriate, given a piece
of code. To use these frameworks, end users often need to learn new APIs or DSLs [1, 2, 5, 6, 8, 11, 21]
and rewrite their existing code. Doing so not only requires significant time and resources, but can also
introduce new bugs into the application.

In addition, existing applications need to be rewritten to take advantage of such DSLs and frame-
works. Rewriting applications requires understanding the intent of the original programmer. And man-
ually written, low level optimizations often obscure high level intent. Finally, even after spending re-

2 Leveraging Parallel Data Processing Frameworks with Verified Lifting

sources in learning new APIs and rewriting code, with newly emerging frameworks, freshly rewritten
code quickly turns into legacy applications. Users will have to repeatedly go through this process to keep
up with new advances, and this requires significant time investment that could have been spent in doing
scientific discovery instead.

One of the ways to make these parallel data-processing frameworks more accessible is to build com-
pilers that can automatically convert applications written in common general-purpose languages such as
Java or Python to high performance processing frameworks such as Hadoop or Spark. Such compilers
enable users to write their application in general-purpose languages that they are familiar with and then
use the compiler to re-target portions of their code to high-performance DSLs [7, 10, 14]. Users would
then be able to leverage the performance of these specialized frameworks without having to learn how to
program individual DSLs. The resources required to convert legacy code would also be minimized and
make it easy to re-target legacy code even when documentation is not available. Finally, if the users de-
cide to migrate on to a newer framework in the future, they just have to re-compile the same application
that they wrote using a different compiler which targets the desired new framework.

This paper demonstrates the application of verified lifting that can be used to convert Java code
fragments to MapReduce tasks. Verified lifting takes, as input, program fragments written in a general-
purpose language, and uses program synthesis to find provably correct summaries of the code. These
summaries are expressed in a logical specification language that encodes the semantics of the input code
fragment. Once a summary is found, it (along with the original input code) can be translated to the
targeted high performance DSL. The idea of verified lifting has been previously applied to database
applications (QBS) [7], and stencil computations (STNG) [10]. In this paper we apply verified lifting to
convert sequential data-processing code to leverage parallel data-processing frameworks. The problem
statement is not new: it was first proposed in the MOLD compiler [14] that translates sequential Java
code into targeting Apache Spark runtime. MOLD uses pre-defined re-write rules to search the space
of equivalent MapReduce implementations. It scans the input code for code patterns that trigger the
re-write rules. This approach has a number of limitations. It requires defining very complicated re-write
rules a priori, which is difficult to do. In addition, rules are extremely brittle to code pattern changes. In
comparison, our approach deals with program semantics rather than program syntax, making it robust
against code pattern changes. It also does not rely on pre-defined translation rules and can thus discover
new solutions and optimizations that the user did not even know existed.

We have implemented verified lifting in a system called CASPER that finds and converts code frag-
ments written in sequential Java to Apache Hadoop. By converting sequential code fragments to Hadoop,
CASPER parallelizes computation at crucial points throughout the program where most of the processing
is concentrated. We have used CASPER to convert a number of benchmark programs with encouraging
results. Overall, this paper has the following contributions:

• We describe how verified lifting can be used to re-target sequential Java applications to Hadoop
MapReduce by converting code fragments within the application to Hadoop MapReduce tasks.

• We describe a new logical specification language that we have designed to express the intent of
code fragments that can be converted to Hadoop.

• We describe how static program analysis techniques can be used to intelligently restrict the search
space of all possible summaries that can be generated by our specification language, and how
inductive synthesis can be used to find provably correct summaries for each input code fragment.

• We present preliminary results from using CASPER to identify and optimize code fragments written
in Java. To show the potential of our approach, we evaluate our system on a number of benchmarks
to demonstrate both its capabilities and limitations.

M.B.S. Ahmad, A. Cheung 3

Figure 1: CASPER system architecture diagram

The rest of this paper is organized as follows. In §2, we describe the overall design of CASPER and
illustrate how it can be used to convert sequential Java programs into Hadoop tasks. Then, in §3 we
explain verified lifting and how each step of the process is implemented in CASPER. Finally, in §4, we
evaluate how CASPER performs using a number of benchmarks and share our preliminary results, and
conclude in §6.

2 System Overview

In this section we describe the architecture of CASPER. CASPER takes Java source code and automati-
cally identifies and converts fragments to semantically equivalent MapReduce tasks implemented using
Hadoop. A new optimized version of the original source code is generated where the original code
fragments are replaced by invocations to the generated MapReduce tasks. Figure 1 shows the different
components that make up CASPER and how they interact with each other in the compilation pipeline.

CASPER begins compilation by statically analyzing the input source code. Using static analysis,
CASPER extracts code fragments that can potentially be translated. Next, CASPER generates a high-level
summary of each extracted code fragment. The summary is expressed in a high-level logic specifica-
tion language (to be discussed in §3.1) and is inferred by a program synthesizer. To quickly traverse
the large search space of possible summaries, CASPER bounds the search space that the synthesizer
considers during the search, and uses a bounded model-checking procedure to find if any candidate sum-

4 Leveraging Parallel Data Processing Frameworks with Verified Lifting

1 int[][] histogram(int[] data) {
2 int[] hR = new int[256];
3 int[] hG = new int[256];
4 int[] hB = new int[256];
5 for (int i = 0; i < data.length; i += 3){
6 int r = data[i];
7 int g = data[i + 1];
8 int b = data[i + 2];
9 hR[r]++;

10 hG[g]++;
11 hB[b]++;
12 }
13 int[][] result = new int[3][];
14 result[0] = hR;
15 result[1] = hG;
16 result[2] = hB;
17 return result;
18 }

(a) Input source code

Map kvPairs = HistogramHadoop.execute();
hR = kvPairs.get(0);
hG = kvPairs.get(1);
hB = kvPairs.get(2);

(b) CASPER wrapper to replace the loop in (a)

1 public class HistogramHadoop{
2 class HistogramMapper extends Mapper {
3 void map(int key, int[] value){
4 for (int i=0; i<value.length; i+=1) {
5 if(i%3==0) emit((0, value[i]), 1);
6 if(i%3==1) emit((1, value[i]), 1);
7 if(i%3==2) emit((2, value[i]), 1);
8 }}}
9 class HistogramReducer extends Reducer {

10 void reduce(Tuple key, int[] values) {
11 int value = 0;
12 for (int val:values) {value=value+val;}
13 emit(key, value);
14 }}
15 static Map execute() {
16 Job = Job.getInstance();
17 job.setMapper(HistogramMapper);
18 job.setReducer(HistogramReducer);
19 return job.execute();
20 }
21 }

(c) CASPER-generated Hadoop task

Figure 2: CASPER translation of the 3D Histogram benchmark.

mary exists for a given code fragment within the bounded search space. While not yet implemented in
the current CASPER prototype, any candidate summary that passes the bounded model checking phase
will be forwarded to a theorem prover, which verifies that the summary generated by the synthesizer
is semantically equivalent to the original code. After formal verification, the summary is used by the
code generator module to produce code for Hadoop MapReduce tasks. The generated tasks are then
inserted back into the original program, and a new version of the input code that leverages the Hadoop
MapReduce framework is produced.

We demonstrate CASPER’s compilation process using an example from the Phoenix benchmarks [16]
that generates 3D histograms from image data stored in a file. As shown in Figure 2a, the original
program sequentially iterates over an array of integers representing the intensity values of colors red,
green and blue for each pixel, and counts the number of times each value occurs for each color from
Lines 9 to 11 in Figure 2a. The parallel program generated by CASPER, on the other hand, emits a
key-value pair with the tuple (color, intensity) as key, and 1 as value from Lines 5 to 7 in Figure 2c. The
generated pairs are then grouped by the key and the frequency of each pair is calculated by adding all
the 1’s together in the reducer phase in Line 12. The input code and the output produced by CASPER is
shown in Figure 2.

2.1 Program Analyzer

The program analyzer is the first component in CASPER’s compilation pipeline. The goal of the program
analyzer is two-fold. First, it identifies all code fragments that are candidates for conversion and secondly,

M.B.S. Ahmad, A. Cheung 5

it automatically prepares formal synthesis specifications for every candidate code fragment identified.
The operations of the program analyzer are grouped into three sub-components as shown in Figure 1,
namely the code fragment identifier, verification conditions generator, and grammar generator.

The first sub-component of the program analyzer is the code fragment identifier. In the current
prototype, CASPER identifies loops and extracts them as candidates for conversion. CASPER currently
does not consider any non-looping code fragments as candidates for conversion, as many of them are
difficult to express in MapReduce, such as recursive functions. MapReduce works best when the work
can be divided into several independent parts, such as in the case of loops without any loop-carried
dependencies. Recursive functions on the other hand often rely on the output of the recursive calls
causing a dependency. On the other hand, CASPER currently ignores loops containing calls to external
library methods that are unrecognized by the CASPER compiler. In §3.4, we discuss in detail the criteria
for a code fragment to be extracted as candidate and consequently highlight the limitations of CASPER’s
current implementation.

The second sub-component is the grammar generator. The goal for the grammar generator is to
confine the space of summaries that can be synthesized. This is needed as the space of all possible
summaries that can be expressed in our logic specification language is too large. The grammar generator
takes as input the code fragments extracted by the code fragment identifier, and statically analyzes each
code fragment to extract semantic information. It then uses the extracted information to generate a
formal grammar for every code fragment. The challenge is to generate a grammar expressive enough
such that the correct summary can be formed by it, but not too expressive that the problem of searching
for the summary becomes intractable. In §3.3.2, we explain how the grammar generator leverages static
program analysis to construct a grammar for each code fragment.

The third component of the program analyzer is the verification conditions generator. This compo-
nent uses Hoare logic [9] and static program analysis to generate verification conditions for each code
fragment. Verification conditions are logical statements that describe what needs to be true for a given
summary to be semantically equivalent to the original code fragment. While the grammar generated by
the grammar generator defines the space of summaries to be searched, the verification conditions define
the correctness specification that the synthesized summary must satisfy. We explain how CASPER uses
Hoare style logic to verify program equivalence in §3.2.

The output of the verification conditions generator is a search template for the summary, with the
search space specified by the grammar generator, and the verification conditions generator producing
the logical assertions that need to be satisfied given a candidate summary. The template is used by the
summary generator to search for a valid summary for the input code fragment.

2.2 Summary Generator

Taking the specifications generated by the program analyzer, the summary generator traverses the search
space to find a summary that satisfies the verification conditions. The summary generator comprises two
modules: the program synthesizer and the formal verifier. The synthesizer takes the search space de-
scription and verification conditions generated earlier, and searches for a code summary that satisfies the
verification conditions. To make the search problem tractable, the synthesizer employs a bounded model
checking procedure. Under bounded model checking, the synthesizer only checks for correctness over a
small sub-domain. When a promising candidate for the summary is found that satisfies the verification
conditions in the sub-domain, it is passed onto the formal verifier which checks it for correctness over
the entire unbounded domain. If the solution fails the formal verification step, it is eliminated from the
search space and the search is restarted for a new candidate solution. Using this two-step verification

6 Leveraging Parallel Data Processing Frameworks with Verified Lifting

process allows CASPER to quickly discard bad candidates. The more computationally expensive process
of formal verification is reserved only for promising candidate solutions. At the end, the summary gen-
erator emits a verified summary for each of the code fragments that can then be translated to Hadoop. It
is possible that the summary generator may exhaust the entire search space and not find a solution that
verifies, in such cases CASPER must decide to either give up on the code fragment or expand the search
space by appending more options to the grammar. In the current prototype CASPER achieves that via a
preset timeout.

2.3 Hadoop Code Generator

The summaries found by the summary generator are expressed in the high-level logic specification lan-
guage. As a final step, CASPER uses these summaries to generate Hadoop tasks. This is done using
syntax-driven rules that translate each construct in the specification language into an equivalent Hadoop
construct. A new modified version of the original input program is then constructed by replacing all
of the code fragments that were successfully converted with equivalent Hadoop tasks. Each loop in the
program that was successfully translated is replaced by code that first invokes the corresponding Hadoop
task and then uses the output generated by the Hadoop task to update the state of the program. Fig-
ure 2b shows such generated wrapper code for the 3D Histogram example. We present more details
about CASPER’s code generation module in §3.5.

3 Converting Code Fragments

In this section, we explain how CASPER uses verified lifting to convert sequential Java code fragments
to MapReduce tasks. We first review the concept of verified lifting in §3.1 and describe the logic speci-
fication language used to express program summaries. In §3.2, we explain how CASPER verifies that the
found summaries preserve program semantics of the original code fragment. §3.3 discusses the search
process used in CASPER to find program summaries. Finally, §3.5 explains code generation after the
program summary has been inferred.

3.1 Verified Lifting

Verified lifting [10] is a general technique that infers semantics of code written in a general-purpose lan-
guage by “lifting” it to summaries that are expressed using a high-level logic language. The summaries
are specified using the logic language in the form of postconditions that describe the effects of the code
on the output variables, i.e., variables that are modified within the code fragment. The goals for our logic
specification language are as follows:

• To generate postconditions that CASPER can translate to the target platform. Any valid postcondi-
tion that cannot be translated is not useful. Therefore, the language should not include constructs
that cannot be translated easily to the target.

• To generate non-trivial postconditions that exhibit parallel data processing. Obviously, a postcon-
dition that executes the computation sequentially is undesirable. §4.2.2 discusses the sources of
parallelism in MapReduce and how CASPER generates solutions that exploits them.

With that in mind, CASPER imposes the inferred summaries to be of the following form:

∀ v ∈ out putVariables . v = reduce(map(data, fm), fr)[idv] + v′ (1)

M.B.S. Ahmad, A. Cheung 7

where data is the iterable input data collection and v′ is the value of the output variable before the code
fragment starts executing. The semantics of the functions involved in Equation 1 are as follows. The
map function iterates over the input data while calling the fm function for every index. fm takes as input
an index and the data collection to generate key-value pairs. Key-value pairs returned by invocations
of fm are collected and returned by map. The reduce function takes these key-value pairs, groups them
by key, and calls the fr function for each key and all values that correspond to that key. Function fr

aggregates all the values for the given key, and emits a single key-value pair. Like map, reduce collects
all the aggregated key-value pairs and returns an associative array that maps each variable’s ID to its
final value. The variable ID is a unique identifier assigned to every output variable by CASPER. CASPER

imposes the summaries (i.e., postconditions) to be of the form described in Eqn. (1) as they can be easily
translated to Hadoop tasks.

In practice, CASPER focuses on loops since those can most likely be converted to Hadoop, and in that
context input variables correspond to variables that are declared outside of the loop and are read inside
the loop body. Similarly, output variables are those that are modified inside the loop body but are not
declared inside the loop body.

Note that in the above discussion, fm and fr remain unspecified. The goal of verified lifting is to find
a definition of fm and fr that makes the inferred summary a valid one that preserves the semantics of
the input code fragment. In CASPER, this is done by the synthesizer (to be discussed in §3.3) generating
the implementation of these two functions, using the verification conditions computed by the program
analyzer (to be discussed in §3.4) on each code fragment.

3.2 Verifying Equivalence

The summaries inferred by CASPER need to be semantically equivalent to the input code fragment.
CASPER establishes the validity of the inferred postconditions using Hoare-style verification condi-
tions [9]. Verification conditions of a code fragment represent the weakest preconditions that must be
true to establish the postcondition of the same code fragment under all possible executions. Generating
verification conditions for simple assignment statements and conditionals is easy. For example, consider
the imperative program statement x := y + 3. To show that the a candidate postcondition x > 10 is a
valid postcondition, we must prove that y + 3 > 10 is true before the statement is executed. Therefore,
y + 3 > 10 is our verification condition. Computing this verification condition is as easy as doing
backwards assignment in the post condition, i.e., replacing each instance of x in the postcondition with
y+3. Computing verification conditions for a loop, however, is much more difficult as a loop invariant is
needed. The loop invariant is an inductive hypothesis that asserts that the postcondition is true regardless
of how many times the loop iterates. Hoare logic states that the following logic statements must hold for
the loop invariant (and postcondition) to be valid:

1. ∀σ . preCondition(σ)→ loopInvariant(σ)

2. ∀σ . loopInvariant(σ) ∧ loopCondition(σ)→ loopInvariant(body(σ))

3. ∀σ . loopInvariant(σ) ∧ ¬loopCondition(σ)→ postCondition(σ)

The first statement above asserts that for all program state (σ), the loop invariant must be true when
the precondition is true, i.e., loop invariant must be true before entering the loop. The second statement
asserts that for all possible program states, assuming that the loop invariant is true, and that the loop
continues, then the loop invariant remains true after one more execution of the loop body (here body(σ)
returns a new program state after executing the loop body given σ). The last statement asserts that for all

8 Leveraging Parallel Data Processing Frameworks with Verified Lifting

preCondition(hR,hG,hB, i)≡
hR= [0..0] ∧ hG= [0..0] ∧ hB= [0..0] ∧ i= 0

postCondition(data,hR,hG,hB)≡
∀ 0≤ j< hR.length. hR[j] = reduce(map(data, fm), fr)[(0, j)] ∧
∀ 0≤ j< hG.length. hG[j] = reduce(map(data, fm), fr)[(1, j)] ∧
∀ 0≤ j< hB.length. hB[j] = reduce(map(data, fm), fr)[(2, j)]

loopInvariant(data,hR,hG,hB, i)≡
LoopCounterExp ∧
∀ 0≤ j< hR.length. hR[j] = reduce(map(data[0 : i], fm), fr)[(0, j)] ∧
∀ 0≤ j< hG.length. hG[j] = reduce(map(data[0 : i], fm), fr)[(1, j)] ∧
∀ 0≤ j< hB.length. hB[j] = reduce(map(data[0 : i], fm), fr)[(2, j)]

Figure 3: Definitions of precondition, postcondition and loop invariant for the 3D Histogram example.

possible program states, if the loop invariant is true and the loop has terminated, then the postcondition
must be true.

There are two challenges associated with finding the postconditions (and hence summaries) for code
fragments that involve loops. First, both the loop invariants and postcondition need to be synthesized.
However, CASPER only needs to find loop invariants that are logically strong enough to establish the
soundness of the postcondition, i.e., those that satisfy 3. listed above. In addition, establishing the
validity of the found invariants and postconditions requires checking all possible program states, mak-
ing the synthesis problem extremely challenging. We discuss how CASPER makes the search problem
manageable in §3.3.3.

3.3 Searching for summaries

The goal of CASPER is to infer a summary for each code fragment, where each summary is expressed as
a postcondition of the form explained in §3.1. In this section we discuss how CASPER uses synthesis to
search for such a postcondition and the loop invariant it requires to prove the postcondition correct.

3.3.1 Generating Verification Conditions

In §3.2, we explained how CASPER verifies that CASPER needs to check. The program analyzer must
generate the precondition, postcondition and loop invariant used in the verification conditions for every
code fragment. Preconditions are generated by extracting the state of the program (the values of input and
output variables) just before the loop starts executing. Whenever the value of a variable before the loop
cannot be extracted, CASPER generates a new variable to represent the initial value. The postcondition
is defined in the form explained in §3.1. The loop invariant has similar form as the postcondition, except
that unlike the postcondition, which calls map and reduce on the entire data collection, the loop invariant
only calls map and reduce on the subset of the collection up until the current index. Additionally, the
loop invariant involves an expression describing the behavior of the loop counters.

Figure 3 shows the precondition, postcondition and the loop invariant generated for the 3D Histogram
benchmark. The postcondition and loop invariant functions describe the behavior that must be true for
the bodies of fm and fr to be correct. For example, the post condition states that for each index j of hR,
the value of hR[j] should equal the output of map and reduce functions for key (0, j).

M.B.S. Ahmad, A. Cheung 9

3.3.2 Specifying Search Space

In this section, we discuss how CASPER generates the grammar that is used by the synthesizer to con-
struct bodies of fm and fr. By dynamically generating a grammar for each code fragment, CASPER

restricts the space of summaries that the synthesizer must search through.
Recall that fm is a function which takes as parameters the input data collection along with an index

into the collection and returns a set of key-value pairs. CASPER constructs the body of fm using emit
statements and conditionals. Currently, CASPER cannot generate implementations of fm which involve
loops. We have found that using the same number of emit statements as the number of output variables
in the code fragment works well as a starting point. The number of emit statements may be increased in
further iterations of the grammar if a solution cannot be discovered. In general, however, CASPER tries to
be conservative to avoid implementations with redundant emit statements as they generate unnecessary
shuffle data, consequently slowing down performance. Each emit statement produces a key-value pair.
The key and value can be any expression generated by one of our expression grammars. CASPER also
supports tuples of primitive data types to be used as key or value.

The fr function is responsible for reducing all values emitted by the map function for a given key
into a single value. The body of fr implements the folding operation. CASPER uses the synthesizer to
generate the folding expression that reduces two values into one. CASPER also generates an expression
grammar to synthesize the folding expression.

CASPER generates expression grammars for each primitive data type. The expression grammar of
a data type can generate expressions which evaluate to that data type using the operators and function-
calls found in the original code fragment. Input variables, loop counters and literals found in the code
fragment are used as terminals. For arithmetic types, CASPER also allows the synthesizer to generate new
constants. In addition to generating an expression grammar for primitive types, CASPER also generates
expression grammars to construct the folding expression in fr and the loop counter expression in the loop
invariant.

If a solution can not be found by the synthesizer, the expression grammars may be incrementally
expanded. This is done by introducing new operators and functions that were not found in the code
fragment. The order by which these constructs are unfolded is guided by priority values that we have
encoded into CASPER.

Figure 4 shows the grammar generated for the 3D Histogram benchmark after 2 iterations. It is easy
to see how the solution presented in Figure 2 may be synthesized from this.

3.3.3 Search Procedure

Despite all the constraints on the search space that we have already discussed, the space of possible
summaries is still too large. To make synthesis tractable, CASPER imposes a bound on the number of
times non-terminals are recursively expanded in the expression grammars. In addition, CASPER speeds
up the verification process by splitting the problem into two parts: CASPER first uses a bounded-checking
procedure to find candidate invariants and postconditions. For candidate invariants and postconditions
that pass the bounded-checking procedure, CASPER then uses a theorem prover to establish soundness
for all input program states. If the theorem prover fails (via a timeout), the synthesizer is resumed to
search for a new candidate summary in the same search space. When no more candidate summaries exist
in the current search space, the synthesizer expands the grammar to increase the search space. This is
done by either adding new operators, increasing the unwrap bound for the grammar or increasing the
number of emits made by fm as discussed earlier. This technique of iteratively expanding the search

10 Leveraging Parallel Data Processing Frameworks with Verified Lifting

fm ::= {EmitMap; EmitMap; EmitMap;}
EmitMap ::= emit(Exp, Exp) | if(BoolExp){ emit(Exp, Exp) }

Exp ::= IntExp | BoolExp | (Exp,Exp)
IntExp ::= IntTerm | data[IntExp] | IntExp + IntExp | IntExp % IntExp

IntTerm ::= intLiteral | loopCounter
BoolExp ::= true | false | IntExp== IntExp | BoolExp ∧ BoolExp

| BoolExp ∨ BoolExp

fr ::= {value= IntLiteral; for(v in values){ value= FoldExp } emit(key,value);}
FoldExp ::= FoldTerm | FoldExp + FoldExp

FoldTerm ::= intLiteral | value | v
LoopCounterExp ::= LoopTerm <= LoopTerm <= LoopTerm

LoopTerm ::= loopCounter | intLiteral | data.length

Figure 4: Grammar generated for 3D Histogram example.

space is controlled through configuration parameters which are specified by the user. Eventually, the
synthesizer will either find a verifiably correct summary or give up and not convert the code fragment.

The second insight allows CASPER to decouple the synthesis procedure from formal verification,
and use off-the-shelf tools for each of the two sub-problems. While we have not implemented formal
verification, this methodology works well in practice in terms of reducing the amount of synthesis time,
as our experiments in §4.2.1 demonstrate.

3.4 Initial Code Extraction

As discussed in §2.1, the current CASPER prototype extracts loops from the input program as candidate
code fragments. It does so by traversing the parsed abstract syntax tree (AST) of the input program
source code to identify loops and extract them into individual fragments. Each extracted code fragment
is parsed and analyzed to ensure they meet the following criteria:

• Within the code fragment, there are no unsupported library function calls. To synthesize sum-
maries, CASPER needs to identify input and output variables (see §3.4.1), and the lack of library
source code makes this impossible unless models that describe the semantics of the library func-
tions are encoded into the compiler. CASPER currently supports commonly used library func-
tions such as methods of the java.lang.{String,Integer} and java.util.{ArrayList,Map}
classes.

• There is no unstructured control flow in each of the loops. The current implementation of CASPER

is unable to extract necessary semantics from such loops, such as the termination condition and
loop stride.

• There are no nested loops. CASPER currently does not process nested loops. In case there are
nested loops in the program, CASPER will attempt to optimize only the inner most loop.

• There are no assignment statements in the code fragment that can create an alias. Moreover,
CASPER currently does not perform any alias analysis and assumes that none of the input variables
in the code fragment are aliased. As such, objects of user defined types may not be assigned.

M.B.S. Ahmad, A. Cheung 11

Fields of such objects may be read or modified as long as the fields themselves are a primitive
type. Similarly, array indexes may be read or modified but not arrays as a whole. Support for
assigning common immutable data structures such as java.lang.{Integer,String} has been
built into the compiler.

Code fragments that do not satisfy the above criteria are filtered. After a loop has been marked
for conversion, it is normalized to a simpler form before further analysis. The normalization process
involves breaking down large instructions into smaller simpler ones and converting all loop constructs
into while(true) loops.

3.4.1 Extracting Input and Ouput Variables

Additional passes are made on the normalized AST to extract input and output variables. CASPER

examines each assignment statement inside the code fragment in isolation and extracts the targets of the
assignments as output variables. Similarly, all variables that appear in the source of an assignment are
extracted as input variables. Local variables that were declared inside the loop body are not considered as
either input or output variables. To determine whether a parameter to a function call is an input or output
variable CASPER needs to analyze the function source code. For library functions, this information must
be encoded into CASPER. If a constant index of an array is accessed, then a separate input variable is
created for the array element. However, if a dynamic access is made, then the entire array is considered
an input variable.

For the 3D Histogram example Figure 2, arrays hR, hG and hB are extracted as output variables and
the data array is identified as an input variable. Variables i, r, g and b are all declared inside the loop
body and thus not considered as input or output variables.

3.5 Code Generation

After CASPER finds a summary for each input code fragment, the last step is to convert each such
summary into a Hadoop task. The class encapsulating the Hadoop task has an execute method. The
execute method takes as parameters all input variables of the code fragment. It invokes the Hadoop
task, and returns an associative array that maps each variable identifier to its final value as computed by
the Hadoop task. The associative array is then used to update the output variables before the remaining
program is executed. Translation of fm and fr to concrete Hadoop syntax is done using syntax driven
translation. Since the postcondition is already in the MapReduce form, the rules to translate them into
the concrete syntax of Haddop are straightforward and omitted due to lack of space.

Figure 2c shows the final output code for the 3D Histogram example Figure 2. HistogramHadoop
is the class generated by CASPER, and the execute method invokes the Hadoop runtime with the gen-
erated map and reduce classes. The resulting values, namely hR, hG and hB, are compiled and returned
by execute and are assigned into the original program’s corresponding output variables as shown in
Figure 2b. Code responsible for reconstructing the arrays from key-value pairs is not shown for brevity.

4 Evaluation

In this section we discuss our current implementation of CASPER and present the results in applying
CASPER to a number of benchmarks.

12 Leveraging Parallel Data Processing Frameworks with Verified Lifting

4.1 Implementation

We have implemented a prototype of the approach described earlier called CASPER. The program ana-
lyzer in CASPER is implemented by extending the open source Java compiler Polyglot [13]. For synthe-
sis, CASPER utilizes an off-the-shelf synthesizer called SKETCH [17]. SKETCH uses counter-example
guided inductive synthesis as its core algorithm. The program analyzer in CASPER defines the verifica-
tion conditions and search space in the SKETCH language. We have implemented the functions and data
structures required to model the semantics of MapReduce programs in the SKETCH language. In addi-
tion, all the program specific user defined data types are automatically modeled in SKETCH by CASPER.
SKETCH performs bounded model checking to generate a summary which we then use to generate the
Hadoop Code. We have not implemented the formal verification component in CASPER and rely solely
on bounded model checking to verify correctness.

4.1.1 Platform For Evaluation

We use our CASPER prototype to translate Java benchmarks into Hadoop tasks. We measure the perfor-
mance of the generated benchmarks on a 10 node cluster of Amazon AWS m3.xlarge instances. Each
m3.xlarge node is equipped with High Frequency Intel Xeon E5-2670 v2 (Ivy Bridge) 2.5 GHz proces-
sors, 15 gigabytes of memory and 80 gigabytes of SSD storage. The cluster runs Ubuntu Linux 14.04
LTS, Hadoop 2.7.2 and Spark 1.6.1. We use HDFS for input data storage in both sequential as well as
MapReduce implementations.

4.1.2 Benchmarks

We have evaluated the performance of CASPER on the following benchmarks. These benchmarks have
been taken from the Phoenix suite of benchmarks [16] and represent traditional MapReduce problems.

• Summation is a benchmark that sums all integer values in a list.

• Word Count is a benchmark that counts the frequency of each word that appears in a body of text
by iterating through each word.

• String Match is a benchmark that determines whether a set of strings is contained in a body of
text. It returns a boolean value for each string as output. Similar to Word Count, this benchmark
also iterates through each word from the input.

• 3D Histogram is a benchmark that generates a three dimensional histogram tallying the frequency
of each RGB color component that occurs in an image. The output is an array for each color
component holding the frequency of each intensity value.

• Linear Regression is a benchmark that iterates over a collection of cartesian points (x,y) and
computes a number of coefficients for linear regression: namely x, y, x∗ x, x∗ y, y∗ y.

4.2 Compilation Performance

In this section, we report the speed at which Hadoop implementations are generated by CASPER and
discuss the quality of those implementations.

M.B.S. Ahmad, A. Cheung 13

4.2.1 Scalability

In our experiments, CASPER was able to synthesize Hadoop implementations for all benchmarks within
one hour. Simpler benchmarks such as Summation and Word Count were converted in under a minute
and required only one iteration of grammar generation. No benchmark required more than two iterations
to successfully synthesize an implementation for. Table 1 lists the average time required to synthesize a
summary over five runs.

Benchmark Time(s) # of Iterations
Summation 13 1
Word Count 44 1
String Match 1406 2
3D Histogram 2355 2

Linear Regression 1801 2

Table 1: Time it takes CASPER to synthesize each benchmark.

4.2.2 Sources of Parallelism

In a MapReduce program, there are two primary sources of parallelism. First, processing can be paral-
lelized in the map phase by partitioning the input data and spawning multiple mappers to process each
partition simultaneously. Secondly, the reduce phase can be executed in parallel by grouping data to
separate keys and aggregating for each key simultaneously. Hadoop also supports the use of combiners.
Combiners aggregate data locally on every node before the shuffle phase to offer additional parallelism
and decrease the amount of data that needs to be shuffled. We now discuss the benchmarks processed by
CASPER and how each leverages both map and reduce side parallelism.

The Summation benchmark produces as output a single integer variable. All data must be aggregated
together and as such can not be split to multiple keys. CASPER emits a key-value pair (0,number) for
each number in the input dataset. These key-value pairs are aggregated locally on each node in parallel
before being sent to the reducer. Note that the key 0 here is the variable ID for the output variable.

The CASPER generated implementation of the Word Count benchmark emits (word,1) for each
word encountered. The reducer then sums the values for each key. All nodes aggregate data locally
to compute word counts for the assigned data partition before the reducer aggregates the intermediate
results. In addition, CASPER uses the words as keys. Therefore, the aggregation for different words will
be performed in parallel.

The String Match benchmark implementation parallelizes the search process. Each mapper iterates
its assigned partition of text and emits (key, true) whenever a key being searched is encountered. The
data is locally aggregated by doing a disjunction of all values for a given key. Reduce side parallelism is
leveraged as each key is aggregated in parallel.

The 3D Histogram benchmark is similar to the word count problem. For each pixel the imple-
mentation emits ((color, intensity),1), where the key is a tuple of color and the intensity value. Data is
aggregated in parallel in the reduce phase for each index of each histogram for a total off 255x3 keys. As
with the above benchmarks data is locally aggregated before shuffling.

Linear Regression is similar to the summation benchmark. All coefficients for a given point (x,
y, x ∗ x, y ∗ y and x ∗ y) are calculated and emitted by the mapper with a different key corresponding to
each coefficient. For each key, the values are aggregated together (by summation) locally before being
globally reduced.

14 Leveraging Parallel Data Processing Frameworks with Verified Lifting

As is evident through all these benchmarks, CASPER can generate non-trivial implementations. In
particular, CASPER leverages reduce side parallelism by reducing each output variable in parallel by as-
signing a unique variable ID to each variable and grouping data based on this variable ID. For arrays,
even greater parallelism can be achieved by reducing each index of the array in parallel. CASPER also
exploits map side parallelism as some expressions may be evaluated before being emitted (e.g., as in Lin-
ear Regression). Lastly, CASPER uses the reduce class as a combiner to locally aggregate data whenever
the reduce input and output key-value pairs are of the same type.

To evaluate the quality of optimization achieved by CASPER, we compare the runtime of the original
sequential implementations against the Hadoop implementations generated by CASPER. We also show
the performance when the synthesized summaries are translated to the Spark framework instead. Lastly,
to add context, we’ve added the performance of Spark implementations generated by MOLD. Figure 5
graphs the results for all five benchmarks against different dataset sizes.

4.2.3 Alternate Implementations

As discussed in §4.2.2, CASPER generates non-trivial implementations that effectively leverage the par-
allelism offered by Hadoop MapReduce. However, these implementations may not be the most efficient
ones. In this section we use the 3D Histogram benchmark as an example to discuss alternate implemen-
tations that exist within the defined search space but are not considered, as the search process in CASPER

stops as soon as it finds a valid summary.
For the 3D Histogram benchmark, an alternative Hadoop implementation is to emit for each pixel in

the input data key-value pairs of the form (intensity,color). Hadoop would then group the data by the 256
intensity values. Aggregation would involve simply counting the number of times each color (Red, Green
or Blue) appears for a given key. Whether CASPER generates this implementation or the one discussed
earlier in the paper is currently a matter of which implementation is discovered first by the synthesizer.
An important area for future work is to allow CASPER to reason about the best implementation through
the use of heuristics.

4.3 Performance of the Generated Benchmarks

In all five benchmarks, the generated Hadoop implementations are not only faster than their sequential
counterparts but they also scale better. Even for our smallest dataset of size 10GB, the Hadoop imple-
mentations outperform the original implementations. The average speed up for Hadoop implementations
across all benchmarks is 3.3× with a maximum speedup of 4.5× experienced in String Match.

Translating the summaries synthesized by CASPER into Spark can yield higher speedups (up to 8.1×)
as Spark uses cluster memory much more efficiently and minimizes disk I/O between different MapRe-
duce stages. Extending CASPER to automatically generate Spark code is currently a work in progress.

5 Related Work

MapReduce DSLs. MapReduce is a popular programming model. It is scales elastically, integrates well
with distributed file systems and abstracts away low level synchronization details from the user. As such,
many systems haven been built which compile code down into MapReduce [3–5]. However, these sys-
tems come with their own high level DSLs that they require the user to write their programs in. We, in
contrast, work with native Java programs.

M.B.S. Ahmad, A. Cheung 15

0

400

800

1200

1600

10 20 30 40 50

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Input Size (GB)

 Sequential

 Hadoop

 Spark

 Mold

(a) Summation

0

600

1200

1800

2400

10 20 30 40 50

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Input Size (GB)

 Sequential

 Hadoop

 Spark

 Mold

(b) Word Count

0

250

500

750

1000

10 20 30 40 50

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Input Size (GB)

 Sequential

 Hadoop

 Spark

 Mold

(c) String Match

0

400

800

1200

1600

10 20 30 40 50

Ex
ec

u
ti

o
n

 t
im

e
(s

)

Input Size (GB)

 Sequential

 Hadoop

 Spark

 Mold

(d) Histogram

0

500

1000

1500

2000

10 20 30 40 50

Ex
ec

u
ti

o
n

 t
im

e
(s

)
Input Size (GB)

 Sequential

 Hadoop

 Spark

 Mold

(e) Linear Regression

Figure 5: Performance comparison of original implementations vs CASPER optimized implementations.

Source-to-source Compilers. There have been efforts in translating programs directly from low level
languages into high level DSLs. MOLD [14] is a source-to-source compiler that relies on syntax di-
rected rules to convert native Java programs to Apache Spark runtime. Our work differs from MOLD
as we translate on the basis of program semantics. This eliminates the need for rewrite rules which are
difficult to generate and brittle to code pattern changes. Many source to source compilers have been
built in other domains for similar purposes. For instance, [12] evaluates numerous tools for C to CUDA
transformations. However, these compilers often require manual efforts in the form of annotating the
original source code. Our methodology works with un-annotated code.

Synthesizing Efficient Implementations. There is extensive literature on using synthesis to generate
efficient implementations and optimizing programs. [18] is latest research work that attempts to synthe-
size MapReduce solutions by using user provided input and output examples. QBS [7] and STNG [10]
both utilize verified lifting and synthesis to convert low level languages specialized high level DSLs.

6 Conclusion

In this paper we have presented CASPER, a compiler that automatically re-targets native Java code to
Hadoop runtime. CASPER uses verified lifting to convert code fragments in the original program to a
high-level representation which can then be translated to generate equivelant Hadoop tasks for distributed
data processing. We have implemented a prototype of CASPER and evaluated its performance on sev-
eral Java benchmarks. Our experiments show that CASPER can translate all input benchmarks, and the
generated programs can run on average 3.3× faster as compared to the sequential versions.

16 Leveraging Parallel Data Processing Frameworks with Verified Lifting

References
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernndez-Moctezuma, Reuven

Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt & Sam Whittle (2015): The Dataflow Model:
A Practical Approach to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-
Order Data Processing. Proceedings of the VLDB Endowment 8, pp. 1792–1803.

[2] Apache Hadoop. http://hadoop.apache.org. Accessed: 2016-04-19.
[3] Apache Hive. http://hive.apache.org. Accessed: 2016-04-20.
[4] Apache Pig. http://tensorflow.org/. Accessed: 2016-05-01.
[5] Apache Spark. https://spark.apache.org. Accessed: 2016-04-19.
[6] Apache Storm. http://storm.apache.org. Accessed: 2016-04-19.
[7] Alvin Cheung, Armando Solar-Lezama & Samuel Madden (2013): Optimizing Database-backed Applica-

tions with Query Synthesis. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, ACM, New York, NY, USA, pp. 3–14.

[8] GraphLab Create. https://dato.com/. Accessed: 2016-04-20.
[9] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), pp. 576–

580.
[10] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky & Armando Solar-Lezama (2016): Verified Lifting of Stencil

Computations.
[11] MongoDB 3.2. https://www.mongodb.org. Accessed: 2016-04-19.
[12] Cedric Nugteren & Henk Corporaal (2012): Introducing ’Bones’: A Parallelizing Source-to-source Compiler

Based on Algorithmic Skeletons. In: Proceedings of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, GPGPU-5, ACM, New York, NY, USA, pp. 1–10.

[13] Polyglot. http://www.cs.cornell.edu/Projects/polyglot/. Accessed: 2016-05-01.
[14] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah & Manu Sridharan (2014): Translating Imperative Code to

MapReduce. In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’14, ACM, New York, NY, USA, pp. 909–927.

[15] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand & Saman Amaras-
inghe (2013): Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation
in Image Processing Pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, ACM, New York, NY, USA, pp. 519–530.

[16] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski & Christos Kozyrakis (2007): Eval-
uating MapReduce for Multi-core and Multiprocessor Systems. In: Proceedings of the 2007 IEEE 13th
International Symposium on High Performance Computer Architecture, HPCA ’07, IEEE Computer Society,
Washington, DC, USA, pp. 13–24.

[17] SKETCH. https://people.csail.mit.edu/asolar/. Accessed: 2016-05-01.
[18] Calvin Smith & Aws Albarghouthi (2016): MapReduce Program Synthesis.
[19] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat & Sanjit Seshia

(2007): Sketching Stencils. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’07, ACM, New York, NY, USA, pp. 167–178.

[20] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky & Kunle
Olukotun (2014): Delite: A Compiler Architecture for Performance-Oriented Embedded Domain-Specific
Languages. ACM Trans. Embed. Comput. Syst. 13(4s), pp. 134:1–134:25.

[21] TensorFlow. http://tensorflow.org/. Accessed: 2016-04-20.

http://hadoop.apache.org
http://hive.apache.org
http://tensorflow.org/
https://spark.apache.org
http://storm.apache.org
https://dato.com/
https://www.mongodb.org
http://www.cs.cornell.edu/Projects/polyglot/
https://people.csail.mit.edu/asolar/
http://tensorflow.org/

	Introduction
	System Overview
	Program Analyzer
	Summary Generator
	Hadoop Code Generator

	Converting Code Fragments
	Verified Lifting
	Verifying Equivalence
	Searching for summaries
	Generating Verification Conditions
	Specifying Search Space
	Search Procedure

	Initial Code Extraction
	Extracting Input and Ouput Variables

	Code Generation

	Evaluation
	Implementation
	Platform For Evaluation
	Benchmarks

	Compilation Performance
	Scalability
	Sources of Parallelism
	Alternate Implementations

	Performance of the Generated Benchmarks

	Related Work
	Conclusion

