
Submitted to: SYNT 2016 c© G. Fedyukovich, R. Bodı́k

Approaching Symbolic Parallelization by
Synthesis of Recurrence Decompositions

Grigory Fedyukovich and Rastislav Bodı́k
Computer Science and Engineering, University of Washington, Seattle, Washington, USA

We present SYMPA, a novel approach to perform automated parallelization relying on recent ad-
vances of formal verification and synthesis. SYMPA augments an existing sequential program with
an additional functionality to decompose data dependencies in loop iterations, to compute partial
results, and to compose them together. We show that for some classes of the sequential prefix sum
problems, such parallelization can be performed efficiently.

1 Introduction

Parallelization of software is important for improving its effectiveness and productivity. Industrial ap-
plications (studied, e.g., in [11]) operate with large inputs and therefore could run days. But even a
small program that iterates over a single array and incrementally computes a single numerical output
could be challenging for parallelization. It would require partitioning of the input data into a sequence
of segments, processing each segment separately, and aggregating the partial outputs for the segments.

Data dependencies prevent parallel processing of the segments. Therefore, the parallel loop should
break the dependencies by devising an alternative function. This additional processing could invoke
some analysis either before the parallel execution: in order to move segment boundaries, or after the
parallel execution: in order to repair the outputs broken by violated dependencies. In this paper, we
address the challenge of synthesizing such additional code automatically.

Preserving equivalence is a crucial requirement to automatic parallelization, and it aims at confirming
that pairwise equivalence of inputs implies pairwise equivalence of outputs [8, 13, 2, 5, 6, 12, 3, 4].
Rather than merely relying on the existing solutions to prove equivalence between programs, we aim at
constructing a parallel program P that is equivalent to the given sequential program S. Given arbitrary
segments of the input data, we build on an assumption that P can always adjust segment boundaries, and
the actual loop computation borrowed from S can be performed on the updated segments.

Program synthesis is an approach to generate a program implementation from the given specification.
State-of-the-art synthesis tools employ the Counter-Example-Guided Inductive Synthesis (CEGIS) [14]
paradigm, i.e., assume a space of candidate implementations and check whether there exists a candidate
among them that matches the given specification. We follow the SMT-based paradigm for bounded
model checking and template-based synthesis provided by ROSETTE [15, 16].

Our novel approach SYMPA automatically generates the search space of candidate decompositions of
S, each of those consists of a prefix function (that would identify during runtime how the given segment
boundaries should be moved), and a companion function (that would identify how the partial outputs
should be aggregated). Given a bound for size of inputs, ROSETTE chooses a candidate decomposition
and explicitly considers all possible input values to check whether the candidate is a valid decomposition.
Our preliminary experiments with SYMPA confirm that for finite-state S and reasonably small inputs the
decomposition can be found in seconds.

2 Symbolic Parallelization

2 Sequential Recurrence Decomposition

We start by introducing the functional notation of array-manipulating programs, and proceed by formu-
lating the parallelization criteria for them. For simplicity, we stick to functions taking a single finite-sized
array as input, and recurrently computing a single output.

An input and an output are the designated variables respectively of the type In and Out. An n-sized
array is a finite sequence of inputs:

A : Inn

In this paper, we consider functions of the type:

f : D× In→ D

where D is a domain of any type. An element d of type D is called a state. Intuitively, f takes a state
and updates it with respect to a given input. The state calculated by function f can further be taken by a
function h to compute output:

h : D→ Out h(f (d, input)) = output

In the scope of the paper, we are interested in iterative application of function f to the elements of an
n-sized array by means of the higher-order function fold:

fold : (D× In→ D)×D× Inn→ D

For example, if there is an array A= (input1, . . . , inputn), then in the first iteration, f would be applied
to the first element input1 and the initial state d0. Then, the updated state would be taken by f again and
updated with respect to the second element input2. The result of n iterative applications of f to d0 is
called a final state and is represented as the following first-order recurrent relation:

fold(f ,d0,A) = f (inputn, f (inputn−1, . . . , f (input2, f (input1,d0))))

Notably, output has to be computed only for the final state:

h(fold(f ,d0,A)) = output

Throughout the paper, we rely on an operator that concatenates m arrays:

append : Inn1× . . .× Innm → Inn1+...+nm

It is important to ensure the following functional property of append:

fold(f ,d0,append(A1, . . .Am)) = fold(f , fold(f , . . . fold(f ,d0,A1), . . . ,Am−1),Am) (1)

The left-hand-side of the equation denotes the initial state d0 iteratively updated by f with respect
to all elements of append(A1, . . .Am). The right-hand-side of the equation consists of m groups of con-
sequent applications of fold to each of the arrays {Ai}. That is, the final state obtained for an i-th
application of fold is further used for the (i+1)-th application of fold. We refer to this property to as se-
quential recurrence decomposition, since it guarantees equivalence between a single application of fold
to append(A1, . . .Am) and m recurrent applications of fold.

Trivially, the equivalence of final states entails equivalence of outputs computed out of these states.

G. Fedyukovich, R. Bodı́k 3

3 Parallel Recurrence Decomposition

Application of fold to each of the arrays {Ai} in parallel requires the recurrent relation to be decomposed.
We assume that each application of fold to Ai takes the same initial state d0, and refer to the corresponding
final states {di} as to partial states (and to the corresponding outputs as to partial outputs).

∀i ·di , fold(f ,d0,Ai) ∀i ·outputi , h(di)

The question is how to aggregate those partial outputs, so the aggregation result is equivalent to the
output of sequential computation. Classic literature [7] refers to such function as to companion function,
existence of which is equivalent to sound parallelization.

companion : Outm→ Out

In the rest of the section, we aim at establishing the property of parallel (as opposed to sequential)
recurrence decomposition that binds together all ingredients of the parallel processing of m arrays. Inter-
estingly, there are several possible ways of defining this property, depending on existence of companion
for each particular f . We consider three such cases.

3.1 Direct Decomposition

The first case assumes existence of a companion that is directly applicable to all partial outputs obtained
after applications of fold to each Ai:

h(fold(f ,d0,append(A1, . . .Am))) = companion(output1 . . . ,outputm) (2)

Example. Consider a function array-max that calculates the maximal element of a given array in
Racket1 (shown in Fig. 1). A function f updates a single argument current-max and in each iteration
returns the result of application of the built-in function max to the current element of the array A and to
current-max. Function fold is straightforward: it takes f, initial state −∞ and the array of numbers.
For some partitioning A = (append A1 . . . Am), the parallel application of fold yields the array out

of maximal elements of each Ai. It is easy to see that there exists a companion function for this case, and
it is equal to array-max.

We return to this scheme in Sect. 5 and show how the companion function can be synthesized.

3.2 Decomposition with Constant Prefixes

When no companion function meeting the condition (2) exists, then the computations fold(f ,d,Ai) and
fold(f ,d,Ai+1) depend on each other and cannot be correctly performed from the speculative initial state
d = d0. If we are in the lucky situation that the impact of the speculative initial state is localized to
a prefix of Ai, we can repair the incorrect execution by recomputing the affected prefix. The scheme
of this subsection performs such a repair on a constant-size prefix, if one exists. First, computations
fold(f ,d,Ai) are performed in parallel from the initial state d = d0, computing the partial result di.
Subsequently, the scheme reruns the computations on a constant-size prefix of Ai+1, starting from the

1We provide fold-like implementation to comply with the chosen formalization. An alternative implementation using apply
is also possible (similar to max in Fig. 3).

4 Symbolic Parallelization

array-max

1 ; given functions:

2 (define (f element current-max) (max element current-max))

3 (define (array-max A) (foldl f -inf.0 A))

4

5 ; function needed for parallel decomposition:

6 (define (companion-max out) (array-max out))

Figure 1: Calculating a maximal element of the array and the companion function in Racket.

state di. The result of processing the prefix, called dcompleted
i , is then supplied to a suitable companion

function instead of di.
We say that A′ is a prefix of A if A = append(A′,A′′) for some A′′. We allow the prefix to be an empty

array. We denote by prefix(A) the prefix of A of the predetermined length prefixlength. We call the prefix
the constant prefix.

Assuming existence of constant prefixes for each Ai+1, the constant-prefix scheme proceeds as fol-
lows:

∀i ·dcompleted
i , fold(f ,di,prefix(Ai+1)) ∀i ·outputcompleted

i , h(dcompleted
i)

Assuming the existence of a suitable companion, the repaired partial results can be combined:

h(fold(f ,d0,append(A1, . . .Am))) = companion(outputcompleted
1 , . . . , outputcompleted

m−1 ,outputm) (3)

Note that the partial output produced for the last array Am is always completed since no subsequent
array needs to be repaired.

An important observation is that computing each dcompleted
i requires processing prefix(Ai+1) twice,

with the second processing serialized after di has been computed. The inefficiency is mitigated by the
observation that the prefixes can be processed in parallel, so the critical path of the computation grows
only by the processing of the constant prefix.

This scheme is applicable when there exists a constant prefix of each Ai+1 that limits the scope of
the necessary recomputation. Crucially, the prefix must not cover the whole Ai+1 or else the repair of
fold(f ,di,prefix(Ai+1)) would modify di+1, which would in turn necessitate the repair of fold(f ,di+1,Ai+2),
serializing the repairs.

Example. Consider a function is-sorted (shown in Fig. 2) that returns 1 if for each pair of consequent
elements of the array A, the former is smaller than the latter, and returns 0 otherwise. A function f updates
two arguments with values of the previous element and the current output.

The companion function is min: it takes the array out of zeroes and ones, and returns 1 if all arrays
{Ai} are sorted (i.e., all elements of out are ones), and 0 - if at least one array is not sorted (i.e., at least
one element of out is zero). The prefix of each Ai+1 used for completing out is defined as the array
containing only the first element of Ai+1.

As we mentioned earlier, the prefixes should be processed twice, e.g., for checking that (append
Ai (take Ai+1 1))2 is sorted and for checking that Ai+1 itself is sorted. Both results are necessary but

2Following the Racket notation, (take Ai+1 1) stands for the sub-array of Ai+1 containing just its first element.

G. Fedyukovich, R. Bodı́k 5

is-sorted

1 ; given functions:

2 (define (f element state)

3 (define prev-element (first state))

4 (define output (second state))

5 (cond

6 [(>= element prev-element) ’(element output)]

7 [else ’(0 0)]

8)

9)

10 (define (is-sorted A) (foldl f ’(-inf.0 1) l))

11

12 ; functions needed for parallel decomposition:

13 (define (companion-sorted out) (apply min out))

14 (define (prefix-length-sorted) 1)

Figure 2: Checking if the array is sorted, the corresponding companion and prefix functions.

not sufficient premises for concluding that (append Ai, Ai+1) is sorted. It remains to establish that
all elements of Ai are smaller than any element of Ai+1. Without including the prefix into both arrays,
such check would require accessing the partial state of Ai which in practice would end up in a more
complicated companion function.

We return to this scheme in Sect. 5 and show how the companion function as well as the value of
prefixlength can be synthesized.

3.3 Decomposition with Conditional Prefixes

When there is no companion function meeting condition (3) for all possible constant prefixes, then there
could exist (but not necessarily does) a more complicated function to express the length of prefixes.
Indeed, the number of elements in the beginning of some Ai might depend on the intermediate states
computed while recurrently applying f to the elements of Ai. The problem of finding such conditional
prefixes can be reduced to iterative evaluating of a predicate for each element of the array and the corre-
sponding state obtained by fold:

prefixcond : In×D→ bool

That is, for each i, the length of prefix(Ai) is the position number k of some element in Ai, such that
prefixcond evaluates to true for the k-th element, and prefixcond evaluates to false for all j-th elements in
Ai where j < k. Thus, contrary to constant prefixes that could be identified by some static analysis of f ,
the calculation of conditional prefixes requires running f for the particular given arrays. For the tasks
enjoying the existence of the appropriate predicate prefixcond and existence of the appropriate companion,
the parallel recurrence decomposition property has the same form as (3). The difference is the way of

6 Symbolic Parallelization

seen-2-after-1

1 ; given functions:

2 (define (f element state)

3 (define seen-one (first state))

4 (define seen-two (second state))

5 (cond

6 [(= element 1) ’(1 seen-two)]

7 [(= element 2) (if (= seen-one 1) ’(seen-one 1) ’(0 0))]

8 [else ’(seen-one seen-two)]

9)

10)

11 (define (seen-2-after-1 A) (foldl f ’(0 0) A))

12

13 ; functions needed for parallel decomposition:

14 (define (companion-search out) (apply max out))

15 (define (prefix-cond-search element) (= element 2))

Figure 3: Searching if “2” appeared in the array some time after “1” and the possible implementation of companion and prefix.

computing prefixes, whose length is not constant any longer:

prefixlength : (In×D→ bool)× (D× In→ D)×D× Inn→ int

Example. Consider a function seen-2-after-1 that checks whether “2” appeared in the array some
time after “1” (shown in Fig. 3). A function f updates two flags indicating whether “1” or “2” was
already seen in the array.

The companion function is max: it takes the array out of zeroes and ones, and returns 1 if at least
one array has “2” appeared some time after “1”. The prefix of each Ai+1 contains all elements from the
beginning of Ai+1 until the first appearance of “2”. Indeed, consider a case when m = 2, A1 contains “1”,
but does not contain “2”, and A2 contains “2”, but does not contain “1”. In this case, it is important to
keep searching “2” in A2 (i.e., traverse all elements until “2” is found. In contrast, processing A1 and A2
solely only lead to incorrect outputs.

We return to this scheme in Sect. 5 and show how the companion function and the prefixcond predicate
can be synthesized.

4 Bringing It All Together

Assuming existence of the prefix and companion for some f , we show how f can be parallelized in
Fig. 4. The diagram considers three processors and represents different segments (also referred to as
(sub-)arrays) of data by means of rectangular boxes, and functions to iterate over data (including the
prefix and companion functions delivered by SYMPA) – by means of ovals.

G. Fedyukovich, R. Bodı́k 7

prefix prefix

companion

segment1 segment2 segment3

input array

segment2 + prefix (segment3)

segment1 + prefix (segment2)

segment3

f f f

output

tim
e

m
a
x
(p

2 ,p
3)

3
m

a
x
(s

1
+

p
2 ,s

2
+

p
3 ,s

3)

Figure 4: Executing a parallelized function.

We estimate the time spent at different stages of the parallel algorithm as a means of number of
fold-iterations. Due to (1), the total time for three sequential fold-s required for three segments is:

Ts = s1 + s2 + s3

For all arrays except the first one, a prefix should be calculated. Since in the worst case the prefix
calculation is an iterative process, the time is linear. Notably, every process should wait until prefixes for
all arrays are found.

Tp = max(p2, p3)

Then, for each array (already updated with prefixes), the corresponding fold should proceed. Simi-
larly, it expects to wait until the computation in all processes is done:

Tf = max(s1 + p2,s2 + p3,s3)

8 Symbolic Parallelization

The last step for executing companion takes time 3, since it just aggregates three integers:

Tc = 3

Finally, the speedup earned by the parallel version of the function compared to the sequential one
can be calculated by the following formula:

X ,
Ts

Tp +Tf +Tc

5 Parallelization Synthesis Problem

Given function f and initial state d0, as declared in Sect. 2, we wish to find such function implementations
for prefix and companion, as declared in Sect. 3, so for any possible sequence of input arrays, prefix and
companion correctly decompose recurrence relations foisted by f :

∃prefix,companion · ∀A1, . . .Am·
h(fold(f ,d0,append(A1, . . .Am))) =

companion(h(fold(f ,d0,append(A0,prefix(A1)))), . . . ,

h(fold(f ,d0,append(Am−1,prefix(Am)))),h(fold(f ,d0,Am)))

5.1 Our Solutions

We present SYMPA, an algorithm to deliver solutions to the synthesis problem, and outline its pseudocode
in Alg. 1. SYMPA aims at parallelizing iterative applications of f to d0 for any possible input arrays
A1, . . . ,Am. It treats each Ai nondeterministically, by allowing them to contain only symbolic elements.
Thus, while parallelizing fold(f ,d0,append(A1, . . .Am)), the algorithm considers all possible resolution
of nondeterminism in each Ai and if a solution is found, it is guaranteed to be general enough to satisfy
all arrays containing numeric elements. To ensure the finiteness of the search space of the solutions, the
lengths of Ai are bounded.

SYMPA exploits our observations made in Sect. 3, and gradually attempts synthesizing companion
and prefix functions for f and d0 under the following hypotheses:

1) there exists a companion that makes (2) hold, so there is no need for prefixes (SYNTNOPREFIX

method),

2) there exist a companion and a constant prefix with the fixed length prefixlength that make (3) hold
(SYNTCONSTANTPREFIX method),

3) there exist a companion and a conditional prefix defined by iterative evaluation of the predicate
prefixcond that make (3) hold (SYNTCONDITIONALPREFIX method).

Each of the three methods verifies whether the corresponding hypothesis is true. In particular, it
traverses the search space of candidate implementations of companion (and, for the hypotheses 2 and 3,
prefix) function and checks whether one of those candidates is a witness for the hypothesis. The increas-
ing complexity of the methods allows saving time while parallelization, and delivering simple solutions
first. To further improve efficiency, SYMPA bounds the search space of companion to contain relatively

G. Fedyukovich, R. Bodı́k 9

Algorithm 1: SYMPA (f ,d0)

Input: Function f , initial state d0
Output: companion, [prefix]

1 A1, . . . ,Am← NONDET()
2 Try return SYNTNOPREFIX(f ,d0,A1, . . . ,Am) . see Sect. 3.1
3 Try return SYNTCONSTANTPREFIX(f ,d0,A1, . . . ,Am) . see Sect. 3.2
4 Try return SYNTCONDITIONALPREFIX(f ,d0,A1, . . . ,Am) . see Sect. 3.3
5 return “unknown”

simple operators (e.g., “+”, “min”, “max”), and the search space of prefixcond to contain conjunctions of
simple terms in linear arithmetic with equality. Notably, the efficiency comes with a price: the more re-
strictions are applied to the search space, the more risks are taken by the algorithm to produce “unknown”
output.

Given solutions to the synthesis problem, it is straightforward to compile the synthesized functions
into a self-contained parallelized function that is equivalent to the sequential one, but behaves in a fashion
described in Sect. 4.

5.2 Current Limitations and Future Improvements

Since prefixes are the key to identify the amount of overhead of parallel computation against sequential
computation, SYMPA can be required to minimize the length of discovered prefixes. In case of constant
prefixes, the algorithm can enumerate positive numbers starting from 0 and check whether the current
number constitutes a sufficient prefix length for all arrays.

Interestingly, in case of conditional prefixes, it is not obvious how to construct the minimal prefix.
Since depending on evaluation of prefixcond , the length of each prefix can vary from array to array.
Furthermore, prefixcond can be evaluated to false for all iterations of the i-th application of fold, implying
that the entire Ai−1 and Ai should be concatenated, and construction of prefixes should be continued with
Ai+1. In general, existence of prefixcond does not even guarantee that the prefix can actually be found.
And in the worst case, the entire input array should be processed sequentially.

As we mentioned in Sect. 3.2, for each i, the elements of prefix(Ai) are processed twice: for com-
pleting the (i− 1)-th, and for starting the i-th applications of fold. For the big picture, we should also
mention the routine for calculating prefix(Ai) itself that requires yet another iterating over these elements.
To avoid this redundancy, the prefix calculation engine can be augmented by construction of symbolic
summaries that would capture the effect of applying of f to the given prefix and an arbitrary initial state.
Despite this idea is borrowed from [11], SYMPA enables its application in a new context. That is, as
opposed to summarizing the effect of application of fold to entire arrays, we would like to summarize
the effect of application of fold just to the prefixes, while leaving the remaining elements to be iterated
by fold. The computed summaries could be applied then directly to complete the (i−1)-th, and to start
the i-th applications of fold, thus avoiding duplicate iterations.

10 Symbolic Parallelization

Benchmark # Vars Hypothesis companion prefixlength / prefixcond Synt time (s.)

array-max 1 SYNTNOPREFIX max — 3
is-sorted 1 SYNTCONSTPREFIX min 1 3
alternation-of-1-2 1 SYNTCONSTPREFIX min 1 2
number-of-112 2 SYNTCONSTPREFIX + 2 3
seen-2-after-1 2 SYNTCONDPREFIX max (= element 2) 3
alternation-of-11-22 3 SYNTCONDPREFIX min (= element 3) 4

Table 1: Preliminary evaluation of SYMPA.

6 Evaluation

We implemented a prototype of SYMPA on top of ROSETTE, a function synthesizer for Racket. Given
a specification in a form of array-handling function f , ROSETTE exploits CEGIS paradigm, that main-
tains a space of candidate decompositions of f and verifies equivalence between f and each candidate
separately. A candidate decomposition that fulfils the specification is returned by ROSETTE as output.

We evaluated SYMPA on a set of Racket implementations of some prefix sum problems. We used a
bound of 15 for the length of the input array. Interestingly, this bound was sufficient, and gave correct
decompositions also for bigger arrays. In general, of course, the soundness of recurrence decomposition
for big arrays is not guaranteed.

Table 1 summarizes our preliminary results of SYMPA for six benchmarks. It measures the complex-
ity of each benchmark by giving the number of variables in the state of each f (“# Vars”). The results of
recurrence decomposition are reported by the hypothesis which was true for the function, the operator for
synthesized companion function, and function used by calculating the length of prefixes (i.e., prefixlength
for the constant prefixes, and prefixcond for the conditional prefixes). Finally, we provide the total time
spent by ROSETTE for realizability check of the correspondent hypothesis (i.e., to realize the necessity
of either constant or conditional prefixes), and for synthesis of the witnessing functions.

Functions array-max, is-sorted and seen-2-after-1 were already discussed in Examples 1, 2,
and 3 respectively. Functions alternation-of-1-2 and alternation-of-11-22 check if the entire
array if an alternation of “1” and “2” and “11” and “22” respectively. Function number-of-112 searches
for appearances of pattern “112”. Interestingly, the synthesis time for all decompositions was insignifi-
cant. In future work, we plan to enhance the set of experiments by more challenging benchmarks.

7 Related work and Conclusion

In this paper we addressed the problem of synthesizing decompositions of recurrence relation that is
known to be crucial for the tasks of automated parallelization [7]. Our approach applies for array-
handling functions and is motivated by the fact that arrays are often split into segments, and accessible
by different processors. Our main idea is to allow each processor first, to perform computation on its
own segment and, if needed, to move segment boundaries.

We are approaching the goal of automated parallelization through formal verification and synthesis.
We showed that the function that realizes the necessity of the prefixes (as well as the function computing
the prefixes themselves, and the function aggregating the results by all processors) can be discovered
using the state-of-the-art synthesizer ROSETTE. We presented a prototype of the algorithm SYMPA to
automatically synthesize decompositions of small programs in Racket, and we envision its further im-

G. Fedyukovich, R. Bodı́k 11

provements in future. We believe, this is the first synthesis-driven approach to parallelization as opposed
to [17, 10, 1, 9, 11] and many others.

Acknowledgments. This work is supported in part by the SNSF Fellowship P2T1P2 161971, NSF
Grants CCF–1139138, CCF–1337415, and NSF ACI–1535191, a Grant from U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program under
Award Number FOA–0000619, and grants from DARPA FA8750–14–C–0011 and DARPA FA8750–
16–2–0032 , as well as gifts from Google, Intel, Mozilla, Nokia, and Qualcomm.

References
[1] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian Hueske, Arvid

Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann, Mathias Peters, Astrid
Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger, Kostas Tzoumas, and Daniel Warneke.
The stratosphere platform for big data analytics. VLDB J., 23(6):939–964, 2014.

[2] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral consistency of C and Verilog programs
using bounded model checking. In DAC, pages 368–371. ACM, 2003.

[3] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. Automated discovery of simulation between
programs. In LPAR, volume 9450, pages 606–621. Springer, 2015.

[4] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. Property directed equivalence via abstract
simulation. In CAV. Springer, 2016. to appear.

[5] Benny Godlin and Ofer Strichman. Regression verification. In DAC, pages 466–471. ACM, 2009.
[6] Ming Kawaguchi, Shuvendu K. Lahiri, and Henrique Rebelo. Conditional equivalence. Technical Report

MSR-TR-2010-119, Microsoft Research, 2010.
[7] Peter M. Kogge. Parallel solution of recurrence problems. IBM Journal of Research and Development,

18(2):138–148, 1974.
[8] A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In DAC, pages 263–268. IEEE,

1997.
[9] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-state machines. In ASP-

LOS, pages 529–542. ACM, 2014.
[10] Cosmin Radoi, Stephen J. Fink, Rodric M. Rabbah, and Manu Sridharan. Translating imperative code to

MapReduce. In OOPSLA, pages 909–927. ACM, 2014.
[11] Veselin Raychev, Madanlal Musuvathi, and Todd Mytkowicz. Parallelizing user-defined aggregations using

symbolic execution. In SOSP, pages 153–167. ACM, 2015.
[12] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Incremental Upgrade Checking by Means of

Interpolation-based Function Summaries. In FMCAD, pages 114–121. IEEE, 2012.
[13] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Data-driven equivalence checking. In

OOPSLA, pages 391–406. ACM, 2013.
[14] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay A. Saraswat. Combina-

torial sketching for finite programs. In ASPLOS, pages 404–415. ACM, 2006.
[15] Emina Torlak and Rastislav Bodı́k. Growing solver-aided languages with Rosette. In Onward!, pages 135–

152. ACM, 2013.
[16] Emina Torlak and Rastislav Bodı́k. A lightweight symbolic virtual machine for solver-aided host languages.

In PLDI, page 54. ACM, 2014.
[17] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for data-parallel computing:

interfaces and implementations. In SOSP, pages 247–260. ACM, 2009.

	Introduction
	Sequential Recurrence Decomposition
	Parallel Recurrence Decomposition
	Direct Decomposition
	Decomposition with Constant Prefixes
	Decomposition with Conditional Prefixes

	Bringing It All Together
	Parallelization Synthesis Problem
	Our Solutions
	Current Limitations and Future Improvements

	Evaluation
	Related work and Conclusion

