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1 Introduction

Programming by example (PBE), or inductive synthesis is a subfield of program synthesis where specifi-
cation on a target program is provided in a form of input-output examples or, more generally, constraints
on the output [9]. While research in PBE dates back as far as 1980s [8], its mass-market applications
only appeared in the last decade. PBE has gained prominence due to its applicability in end-user pro-
gramming – enabling end users to write small scripts for automating repetitive tasks from examples. The
first PBE-based product was FlashFill – a system for automatic synthesis of string transformation scripts
in spreadsheets [4]. It was incorporated in Microsoft Excel 2013, which made it available to hundreds
of millions of end users. FlashFill was followed by FlashExtract, a system for automated data extraction
from text files [6], which was deployed in Microsoft PowerShell and Azure Operational Management
Suite. The team has since developed similar technologies for numerous data wrangling domains.

Deployment of a mass-market industrial application of program synthesis is a challenging process.
First, an efficient implementation requires non-trivial engineering insights, which are often overlooked
during development of a research prototype. Second, the development process should be fast and agile,
tailoring to versatile requirements of the product/user base. Third, the underlying synthesis algorithm
should be understandable to engineers responsible for product maintenance. Initial implementations of
FlashFill and FlashExtract violated all these conditions, requiring more than a year of research & de-
velopment done by PhDs or graduate students. This prompted us to generalize the ideas of FlashFill,
FlashExtract, and their successors into FlashMeta – a framework for automatic generation of domain-
specific inductive synthesizers [9]. FlashMeta made development of domain-specific PBE applications
scalable, allowing us to generate a production-ready synthesis library in a few weeks instead of months.

In 2015, S. Gulwani’s PROSE (“PROgram Synthesis using Examples”) group at Microsoft [1] moved
from Microsoft Research to Microsoft Data Group, establishing the first R&D group in PBE-based data
wrangling at the company [3]. At Data Group, we are putting our algorithmic framework at the heart of
new synthesis APIs, which enable various product teams to develop novel PBE features in their applica-
tions. Such an environment turns out fruitful for new problems and insights in program synthesis, which
arise only in an end-user facing and industrially deployed applications. In this presentation, we want to
share some of these problems, lessons, and potential solutions with the program synthesis community.

2 Problems

In this section, we outline a selection of research problems that arise during deployment of a PBE-based
technology to mass markets. Most problems are cross-disciplinary, involving elements of HCI and AI.
Many allow a variety of fundamental solutions, which we will discuss in more detail in the presentation.
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Ambiguity resolution Traditionally, the task of program synthesis has lied in finding any program in
the underlying domain-specific language (DSL) that satisfies the specification. However, input/output
examples are highly ambiguous. In a typical data wrangling task an initial specification, provided by an
end user, allows up to 1020 conforming programs [9]. The real challenge lies not in finding them, but
in picking the right program – the one that is more likely to be applicable on the rest of the user’s data.
Ranking is a crucial step in deployment: for instance, FlashFill only appeared in Excel after it was able to
solve the most “obvious” transformation tasks from 1 example, before the users lost trust in the system.
One way to resolve ambiguity between program candidates is ranking – applying a scoring function on
programs. Such function can be specified manually by a DSL designer (with the right extension hooks
provided by the framework) or learnt from a dataset [10]. Other solutions for ambiguity resolution exist,
such as interactive clarification (discussed below).

Incremental synthesis When the system is unable to correctly learn the user’s intent from one exam-
ple, the user is forced to provide additional constraints. These constraints prompt an additional round of
learning, which should take into account both the accumulated and the newly provided constraints. In
the interest of superb end-user experience, iterative learning should be extremely fast – within 500 ms
for most real-life scenarios. However, invoking a fresh program synthesis query with a large set of con-
straints is prone to increase learning time. Thus, we are forced to solve an incremental synthesis problem
– given a set of solutions from the past user interactions and the new constraints for the same learning
task, filter the set down to only those programs that satisfy the new constraints. With the set sizes ranging
up to 1020 programs, this problem involves challenging research and engineering. Our solution involves
a combination of background processing, “fast-track” tactics, and novel data structures for storing and
processing DSLs.

Interaction An interactive program synthesis session generates suggestions and clarifying questions
to the user in addition to a candidate program. In such a session the user plays the role of an oracle,
and the system solicits their help proactively in the form of various queries [5]. In addition to ambi-
guity resolution, interactive PBE plays a huge HCI role: it establishes trust in the system, and creates
unique predictive experiences [7]. Treating interactions as a first-class concept in a general-purpose PBE
framework yields a number of challenging questions both in problem definition and implementation.

Performance-minded engineering A user-facing application should be responsive at all times, pre-
viewing operations in < 500 ms. However, program synthesis is a notoriously hard combinatorial search
problem. For instance, the SyGuS-COMP 2015 competition picked a time limit of 3600 seconds of
single-core CPU time across all its benchmarks [2]. In data wrangling domains, the required time typi-
cally ranges from milliseconds to minutes [6]. With a 500 ms response requirement, improving perfor-
mance on a long tail of problems becomes a substantial engineering challenge.
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