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We report on the design of the third reactive synthesis competition (SYNTCOMP 2016), including
a major extension of the competition to specifications in full linear temporal logic. We give a brief
overview of the synthesis problem as considered in SYNTCOMP, and present the rules of the com-
petition as well as the current benchmark set. Furthermore, we give an outlook on further changes
and extensions of the competition that are planned for the future.

1 Introduction

The automatic synthesis of reactive systems from formal specifications has been one of the major chal-
lenges of computer science for more than 50 years, and a number of fundamental approaches to solve the
problem have been proposed [15,23,49,51]. For a long time, the impact of theoretical results on the prac-
tice of system design has been rather limited, due to the high worst-case complexity of synthesis from
specifications in expressive temporal logics, and a lack of algorithms that solve the problem efficiently
in the average case. Recently, there have been a number of new approaches that aim at more practical
synthesis algorithms by either restricting the specification language [7, 46], or by a smart exploration of
the search space [26, 29–31, 33, 53]. Moreover, there has been an increased interest in applications of
reactive synthesis techniques, e.g., in robotics and cyber-physical systems, or for the synthesis of device
drivers. [20, 22, 42, 43, 52] Despite this growing interest, there remains a divide between theoretical re-
search and applications, due in some part to a missing infrastructure to compare synthesis tools, and a
lack of incentive to build efficient and mature implementations (as noted by Ehlers [25]).

In 2014, the authors and Ehlers founded the reactive synthesis competition (SYNTCOMP) in order
to foster the research in scalable and user-friendly implementations of synthesis techniques. The goals
of SYNTCOMP are

i) to make synthesis tools comparable by establishing a common benchmark format,
ii) to facilitate the exchange of benchmarks in a public benchmark repository,

iii) to establish a dedicated platform for a comprehensive and fair evaluation of synthesis tools,
iv) to encourage the implementation of synthesis tools that can be used as black-box solvers in appli-

cations, and
v) to foster the efficient implementation of synthesis algorithms by regularly providing new and chal-

lenging benchmark problems, and comparing the performance of tools on these.

Since its inception, SYNTCOMP was held annually, and the first two iterations [35, 36] were intention-
ally restricted to safety properties and a low-level specification format derived from the existing AIGER
format [5, 34], in order to have a low entry barrier for participants. We consider the competition to be a
great success thus far: were before there were no two synthesis tools that used the same input language,
there are now five tools from different research groups that entered the competition and can be compared
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in a fair and meaningful way, based on a common specification language. As a part of the SYNTCOMP
effort, we maintain a public benchmark library1 that now consists of several thousand benchmark in-
stances from a wide range of domains, and is steadily growing. Moreover, SYNTCOMP has triggered an
increased interest in the development of efficient synthesis tools and specification languages that relate
to the competition, as witnessed by a growing number of publications on these topics [8,11,13,14,41] 2,
including tools and research groups that have not participated in the competition thus far [21,24,47,56].

SYNTCOMP 2016 introduces a major extension of the competition by dropping the restriction to
low-level safety properties. To this end, we add separate competition tracks for the evaluation of synthesis
tools on specifications in a high-level input format for full linear temporal logic (LTL), as well as for the
popular GR(1) fragment of LTL. The specification format used for the new tracks is the temporal logic
synthesis format (TLSF), recently introduced by Jacobs and Klein [37].

In this paper, we describe the design of SYNTCOMP 2016, with a focus on the extension to speci-
fications in TLSF, and report on our plans for further extensions of the competition in the coming years.
We describe the synthesis problem as considered in SYNTCOMP in Section 2, followed by a presenta-
tion of the design and rules of SYNTCOMP 2016 in Section 3. Although benchmark and tool submission
was still open at the time of this writing, we give a preliminary report on benchmarks and participants
in SYNTCOMP 2016 in Sections 4 and 5, respectively. Finally, in Section 6 we give our thoughts on
possible and probable further extensions of SYNTCOMP in the future, as a basis for discussion.

2 Reactive Synthesis: A Brief Overview

We briefly summarize the reactive synthesis problem as it is considered in SYNTCOMP, including ap-
proaches that have been developed to solve it.

The Synthesis Problem. We consider the synthesis problem for reactive systems that can be repre-
sented as finite-state machines. The specifications we consider come in two forms: either as temporal
logic formulas, more specifically in linear- time temporal logic (LTL) [48], over the sets of inputs and
outputs of the system, or as an AIGER circuit [5, 34] with a single output, with a set of controllable and
a set of uncontrollable inputs.

For specifications in LTL, the realizability problem is to decide whether there exists a finite-state
machine that reads the inputs and produces outputs such that the specification is satisfied in all possible
executions. For AIGER circuits, the realizability problem is to decide whether there exists a controller
circuit that reads the controllable inputs and the current state of the specification circuit, and produces
the controllable inputs of the specification circuit such that the single output of the circuit is never raised.

Given a realizable specification, the synthesis problem is to find an implementation that satisfies the
specification. The synthesis problems we consider are equivalent to finding a winning strategy in infinite
two-player games whose structure and winning strategies are determined by the specification [57]. For
both kinds of specifications, solutions can be encoded into an AIGER circuit.

Important Fragments. There are several important fragments of LTL, differing in expressivity and in
the complexity of the realizability and synthesis problems. For full LTL, these problems are 2EXPTIME-
complete in the size of the specification formula. If we restrict specifications to safety properties, then

1Synthesis Competition Repository: https://bitbucket.org/swenjacobs/syntcomp/
2Moreover, the ideas from [59] were also used in the version of Simple BDD Solver that competed in SYNTCOMP 2015.
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the problems are in PSPACE. Another important fragment that we consider in SYNTCOMP is GR(1) [7],
which allows some restricted liveness properties in addition to simple safety properties. For GR(1), the
synthesis problem is in EXPTIME.3

Synthesis Algorithms. There are a number of existing algorithms to solve the synthesis problem, based
on two fundamental approaches. The first approach, by Büchi and Landweber [15], works by transla-
tion into a deterministic Büchi game, and solving it. The second approach, by Rabin [51], works by
translation into a tree automaton, and solving its emptyness problem.

In recent years, many algorithms for solving synthesis problems more efficiently have been proposed.
We mention a few prominent approaches. Bounded synthesis [33] searches incrementally for solutions
up to a certain size. An algorithm based on bounding liveness properties and a symbolic representation
by antichains has been implemented in the synthesis tool Acacia [27,28]. Other algorithms try to exploit
the structure of commonly occuring specifications, and propose incremental or compositional ways to
solve the problem [29, 40, 53].

For safety properties, efficient algorithms can be implemented using BDDs and a fixpoint construc-
tion over the uncontrollable predecessors of the unsafe states. For GR(1), there is a similar algorithm,
using a nested fixpoint construction [7]. A more detailed introduction into approaches to solve safety
games can be found in the report of SYNTCOMP 2014 [35].

3 SYNTCOMP 2016: Rules and Setup

The basic idea of SYNTCOMP is that submitted tools are evaluated on a previously unknown set of
benchmarks, without user intervention. Tools are then ranked with respect to number of problem in-
stances that can correctly be solved within a given timeout. The competition is separated into tracks that
correspond to the fragments of LTL mentioned in Section 2.

In the following, we first give an overview of the rules that are common to all tracks, and then go into
some details for the separate tracks, with a focus on the changes made this year.

Tracks. The competition is divided into three main tracks, distinguished by the specification format: i)
safety specifications in AIGER format, ii) full LTL specifications in TLSF, and iii) GR(1) specifications
in TLSF. In all tracks, realizability is defined with respect to Mealy semantics, i.e., the outputs of an
implementation can depend on the inputs without any delay.

In each track there are four different subtracks, distinguished by the task (realizability checking or
synthesis) and by the execution mode (sequential or parallel). While in realizability checking the tools
only need to return one bit of information, in synthesis they need to return a provably correct solution.
In sequential categories, tools can only use one core of the CPU, and in parallel categories they can use
multiple cores in parallel. Thus, we have twelve competitive subtracks overall.

Entrants. As in previous years, we ask participants to hand in their tools as source code, licensed for
research purposes, accompanied by installation instructions and a short description of the system and the
synthesis approach and optimizations it implements.

3More precisely, for GR(1) the size of the game arena is exponential in the size of the formula, and GR(1) games are solved
in quadratic time in the size of the arena.
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Each author can submit up to three different tool configurations per subtrack. Our experience from
previous iterations suggests that this limit is a good compromise that allows some flexibility for the tool
creators, while avoiding the flooding of the competition with too many configurations of the same tool.

The organizers commit to making reasonable efforts to install each tool, but reserve the right to
reject entrants where installation problems cannot be resolved. This was not the case for any of previous
iterations of the competition. In case of crashes or obviously wrong results we will allow submission of
bugfixes, if time permits.

We encourage participants to visit the SYNT workshop and the CAV conference for the presentation
of the SYNTCOMP results, but this is not a requirement for participation. The organizers reserve the
right to submit their own tools, and did so in previous years.

Timeout. In sequential execution mode, the timeout for each problem is 3600s of CPU time. In the
parallel mode, the timeout is 3600s of Wall Time.

Ranking. Competition entrants will be ranked with respect to the number of problems that can be
answered with a correct solution within the given timeout. Timeouts are not counted, and wrong results
are punished by subtracting 4 points. Since most or all of the benchmarks will be available publicly
before the competition, we do not expect such a punishment to be necessary.

Correctness in realizability subtracks is determined either by existing information about the realiz-
ability of the benchmark (possibly stored in the STATUS field of the specification [36]), or by a majority
vote of all participating solvers if such information is not available. In the latter case, the execution plat-
form for the experiments generates a notification that a previously unsolved problem has been solved, and
the organizers inspect the problem to avoid errors. Correctness in the synthesis subtracks is determined
by verification of the produced solution within a separate time limit of 3600s (for details see below).

Quality Metrics. The goal of synthesis is to obtain implementations that are not only correct, but also
efficient. Therefore, in previous iterations of SYNTCOMP we also considered additional quality rank-
ings, where correct solutions are additionally weighted based on their size. Since the rankings used in
previous years gave unsatisfactory results, we will not have an official quality ranking this year. How-
ever, we will still analyze solutions with respect to their size and present our findings at the presentation
of results and in the final report.

We plan to bring quality rankings back in future iterations of the competition, based on our experience
from SYNTCOMP 2016 and our thoughts presented in Section 6.3.

Competition Setup. Like in previous years, SYNTCOMP 2016 is organized on the EDACC plat-
form [3]. The competition runs on a set of machines at Saarland University, each with a single In-
tel XEON processor (E3-1271 v3, quad-core, 3.6GHz) and 32 GB RAM (PC1600, ECC), running a
GNU/Linux system. Each node has a local 480GB SSD that can store temporary files. To ensure a high
comparability and reproducability of our results, a complete machine will be reserved for each job, i.e.,
one synthesis tool (configuration) running one benchmark. Since all nodes are identical and no other
tasks will run in parallel, no other limits than the timeout will be set.

Benchmark Selection. A subset of all available benchmarks will be selected for the competition. Like
in the previous year [36], benchmarks will be separated into categories, and we will ensure that the differ-
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ent categories have approximately equal weight in the competition, and that the competition benchmarks
represent a good distribution across different difficulties for each category.

3.1 Specific Rules for New Tracks

Specifications. In the LTL and GR(1) tracks, specifications are given in basic TLSF format. For tools
that do not support TLSF directly, the organizers supply a number of translators to different existing
formats in the SyFCo tool [1] (which will be installed on the competition machines). In the LTL track,
specifications are interpreted according to standard LTL semantics. In the GR(1) track, specifications are
restricted to the GR(1) fragment and are to be interpreted under strict implication semantics. Addition-
ally, we offer a translation to LTL with standard semantics, which allows LTL synthesis tools to compete
in this track.

Output and Correctness. In the synthesis subtracks, tools must produce solutions in AIGER format if
the specification is realizable. As a syntactical restriction, the sets of inputs and outputs of the TLSF file
must be identical to the sets of inputs and outputs of the AIGER solution. Additionally, solutions will be
model checked with existing LTL model checking tools.

Legacy Tools. For comparison, we plan to run legacy synthesis tools, non-competitive, in the LTL/GR(1)
tracks. To this end, we will convert the TLSF specification to the native input format of the legacy tools,
and use a wrapper script to make inputs and outputs conform to the standard format. Since this could be
a significant amount of work for the synthesis subtracks, we will only consider the realizability problem
for legacy tools. Legacy tools may include the latest available version of Unbeast and Lily in the LTL
track, and Anzu in the GR(1) track (unless a new version of them is entered into the competition).

3.2 Specific Rules for AIGER safety track

Specifications. Specifications are given in the Extended AIGER Format for Synthesis [34,35], model-
ing a single safety property.

Output and Correctness. In the synthesis category, tools must produce solutions in AIGER format.
These will be model checked with the best-performing model checkers from the single-safety track of
the Hardware Model Checking Competition.

Since model checking turned out to be a significant challenge for some problem instances in previous
years, we introduce another extension in SYNTCOMP 2016. As an alternative to full model checking,
tools can output, in addition to their solution, a winning region of the system as a witness for correctness.
If a winning region is returned, then correctness of the solution is determined by checking that the
winning region is an inductive invariant for the given solution.

Legacy Tools. For comparison, we will run some of the entrants of SYNTCOMP 2014 and SYNT-
COMP 2015 in the AIGER safety track. This allows us to highlight the progress of tools over the course
of the last two years.
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4 SYNTCOMP 2016: Benchmarks

At the time of writing, the collection of benchmarks for SYNTCOMP 2016 is not finished. We summa-
rize the state of the SYNTCOMP benchmark library, and briefly describe the new benchmarks that have
been added for 2016 thus far:

4.1 Existing Library

From previous years, we inherit a benchmark library in AIGER format with 20 different classes of
benchmarks, consisting of 3105 different benchmark instances. The benchmarks come from diverse
academic sources.

Initial Benchmark Set. Benchmarks added in the first year are described in more detail in the report
of SYNTCOMP 2014 [35]. They consist of:

• ARMs AMBA specification and Intels Generalized Buffer specification (both described in previous
work by Bloem et al. [7]),

• simple reactive systems such as traffic lights and arbiters of different complexity (taken from the
test suite of synthesis tool LILY [39, 40]),

• encodings of the ltl2dba and ltl2dpa problems that use the synthesis tool to obtain a deter-
ministic Büchi automaton (dba) or deterministic parity automaton (dpa) from an LTL specification
(taken from the Acacia+ benchmark set [12, 27]),

• a load balancer benchmark (as originally described by Ehlers [25]),

• a “factory assembly line” benchmark that models two robot arms on an assembly line,

• a “moving robots” benchmark that models a robot that should avoid obstacles and reach a goal in
two-dimensional space, and

• a number of basic building blocks of circuits, such as adders, bitshifters, counters, and multipliers,
of different bit-width.

Benchmarks added in 2015. Benchmarks added in the second year are described in detail in the report
of SYNTCOMP 2015 [36]. They consist of additional instances of some of the classes above, as well as:

• a benchmark class that models the scheduling of washing cycles under different constraints,

• benchmarks for the synthesis of drivers for a hard disk controller (based on a driver synthesis
benchmark for the Termite synthesis tool [2, 52]),

• the synthesis of a Huffman encoder (as described by Khalimov [41]),

• artificial benchmarks based on problems from the hardware model checking competition HWMCC [6,
16]; the original instances are unsafe and we ask the synthesis tool for a controller of a subset of
the inputs such that the resulting system is safe,

• a set of benchmarks derived from HyperLTL model checking problems [32], where the synthesis
tool is used to generate a witness for the given HyperLTL property,

• a set of benchmarks that uses the synthesis tool to generate matrix multiplication circuits of differ-
ent bit-width, and possibly with repeated multiplication.
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4.2 New Benchmarks

TLSF Benchmarks. For SYNTCOMP 2016, we have added a number of benchmarks in TLSF that
have been present in AIGER format before. This includes the benchmarks that come with LTL synthesis
tool LILY [39, 40], as well as those that come with Acacia+ [12, 27] (i.e., load balancer, ltl2dba/ltl2dpa,
and a version of the generalized buffer), as mentioned above.

One of the great benefits of the TLSF format is that it supports parameterized benchmarks. The
following pre-existing benchmarks have been added in a parameterized form:

• AMBA bus controller (parameterized in the number of masters that want to access the bus),

• generalized buffer (parameterized in the number of receivers), and

• load balancer (parameterized in the number of servers).

In addition, we have a number of new parametric benchmarks in TLSF:

• a number of arbiters of different complexity (parameterized in the number of choices),

• a set of new ltl2dba benchmarks, taken from recent work on the translation of LTL into au-
tomata [58] (these formulas are given in parameteric form),

• a corresponding set of new ltl2dpa benchmarks (additionally parameterized in the number of
colors of the parity automaton),

• a simple detector that checks whether all inputs are true eventually (parameterized in the number
of inputs), and

• a compositional version of the AMBA benchmark that consists of a number of independent syn-
thesis problems (some of them parameterized in the number of masters).

AIGER Benchmarks. For the AIGER track, we have added two sets of new benchmarks to the library
this year:

• the new ltl2dba and ltl2dpa benchmarks mentioned above have been translated to AIGER
format, using the LTL2AIG toolchain described in [35], for a fixed range of parameters and ap-
proximations of liveness by safety properties, and

• a set of additional derived benchmarks based on safety model checking in HWMCC, more specif-
ically the 2012 edition of HWMCC.

5 SYNTCOMP 2016: Participants

At the time of writing, the deadline for participation is still one month away. From personal communi-
cation with previous SYNTCOMP participants and additional interested parties, we know that at least
seven different research groups are working on tools for SYNTCOMP 2016.

Like last year, we will also run tools that entered previous competitions on the new benchmark
collection, to get a better idea of the progress that is being made. For the TLSF-based tracks, we plan to
run legacy tools (based on a translation from TLSF to their respective input formats) in addition to the
participants.
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6 The Future: Ideas for SYNTCOMP 2017 and Beyond

6.1 Compositional Specifications and Systems

Possible extensions of the specification format are in part also discussed in the format description [37].
Here, we focus on extensions of the competition, and what this means for the synthesis problems that
need to be solved.

Compositional Specifications: Systems that need to be synthesized often consist of multiple com-
ponents that can either be synthesized separately if specifications are completely local, or need to be
synthesized such that the composed system additionally satisfies a global specification. The latter case is
interesting for SYNTCOMP, and is currently not supported by the specification format.

Partial Implementations: When considering composed systems, a natural case of the synthesis prob-
lem is the synthesis of components for a system that is already partially implemented, i.e., where some
components have a fixed implementation.

In some sense, this problem is already considered in the AIGER tracks of SYNTCOMP, as an AIGER
file can contain both an implementation of a component, and a monitor automaton that raises an error
output if the safety specification is violated.

In a component-based system, an existing implementation of a component could for example be
given as an AIGER circuit. An extension of TLSF with such components could also be easily modified to
generalize both the existing TLSF format and the existing AIGER format, as explained in the following.

Integration of both formats into one: If the supported format includes both compositional TLSF
specifications and partial implementations as AIGER circuits, then the resulting format generalizes both
the existing TLSF format (obviously), and the existing AIGER format: a given specification in AIGER
format can simply be added as a component with a fixed implementation and a single output Error, where
controllable inputs are assigned as outputs to the system to be synthesized, and the specification of the
system is simply

G¬Error.

Imperfect Information: Finally, compositional specifications lead to the synthesis problem under par-
tial information, i.e., the components need to decide on their behavior without knowing all inputs or the
full internal state of the other components. As Pnueli and Rosner have shown [50], the synthesis problem
is undecidable under partial information, already for pure safety specifications. However, there have been
a number of approaches to solve instances of the problem [10, 31, 33, 44, 45], and it would be interesting
to include it into the competition at some point.

6.2 Synthesis Challenges

In its third year, SYNTCOMP is still in the process of natural growth, and is only establishing itself
as a regular institution in the synthesis community. In some related research fields, competitions have
been around for a long time, and there have been some unintentional adverse effects on the develop-
ment of tools. On the one hand, a competition gives additional incentive for the development of efficient
push-button tools, and positive effects of competitions on the quality and efficiency of tools have been
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observed [4, 16, 38, 55]. On the other hand, the specific design and rules of a competition may also dis-
courage research on certain aspects of a problem, if they are not part of the competition. A long-running
competition may also produce a number of very efficient and mature tools that discourage newcomers
from entering the field.

Thus, as organizers of SYNTCOMP we have to admit to a responsibility for the research directions
that we encourage or discourage by the design and the effects of the competition. One way to deal with
the problems mentioned above would be flexible synthesis challenges that change from year to year (or
every few years), and might be decided on by the community. Some of the tasks mentioned above, such
as specialized quality metrics, could be offered as challenges for a limited time.

Another option is to provide potential participants with baseline solvers that already integrate the
commonly accepted optimizations, such that the participants can focus on additional smart solutions,
and don’t have to implement all the basic features themselves. This approach could even be enforced in
a special track, where participants must start from this common baseline, and are only allowed to make
limited changes to the implementation that is supplied. An example of such an approach are the “Hack
Tracks” of the SAT competition, where participants start from a given SAT solver and the difference
between the baseline and their own implementation is limited to 1000 (non-space) characters.

6.3 Quality Ranking/Quantitative Aspects

As mentioned before, in synthesis we usually not only care about correctness of our implementations,
but also about quantitative properties of the synthesized artifact, like its size, its reaction time to certain
events, or possibly other aspects like energy efficiency.

Experience in Previous Competitions. In SYNTCOMP 2014 and 2015, we used different quality
rankings based on the number of AND-gates in the solution, by comparing either against the size of
other solutions in the given competition, or against the size of a reference solution. A comparison against
a value that is not fixed before the competition means that the results (including the relative ranking of
tools) may change when we add a tool. This is already undesirable in general, but in particular if we want
to use the results of the competition to evaluate a tool that did not participate. Therefore, using a reference
solution is in general preferable. However, reference solutions are not always available, since one of our
goals is to have new and challenging benchmarks in every iteration of the competition. Therefore, in
SYNTCOMP 2015 we adopted a mixed solution, which uses the size of a reference solution if available,
and the size of the smallest solution in the current run otherwise. Evaluation of non-participating tools
then requires to take this distinction into account.

However, even with this mixed approach, the results of the quality ranking were somewhat unsatis-
factory, since the size of solutions effectively only played a small role, and was dominated by the number
of problems that could be solved. This was due to two main reasons. First, points for the size of solu-
tions were given according to a log10-scale, i.e., for solution A to get one additional point compared to
solution B, A had to be 10 times smaller than B. Probably a log2-scale would be better if we want to
emphasize the need for small implementations. Second, we compared the size of full solutions, which
in the AIGER format includes the specification circuit. Since we have many problems with a very large
specification, the size of the solution is often dominated by the size of the specification, and the size of
the synthesized code does not make much of a difference. An option to repair this would be to compare
the size of the synthesized code instead of the size of the full solution. In SYNTCOMP 2016, we will not
have an official quality ranking, but we will experiment with this evaluation scheme to see if it should be
used in the future.
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Quality of Solutions for LTL specifications. With our extension of SYNTCOMP to specifications in
LTL, one question is whether the same ranking scheme is also suitable and fair for the new tracks. In the
AIGER-based track, input and output are both symbolically encoded, and we can reasonably expect tools
to optimize with respect to this encoding. In the LTL-based tracks, the input is not symbolically encoded,
and the output encoding will in many cases be an additional step to conform to the competition format.
Therefore, the answer to the question of fairness and suitability is not obvious. On the other hand, one
can argue that almost all solutions that are efficient by some different measure can also be encoded into
a small symbolic AIGER representation. In SYNTCOMP 2016 we will experiment with the existing
quality measures also for the TLSF-based tracks, and want to discuss the issue with the community at
the SYNT workshop.

Quality Measures Beyond (Circuit) Size. There are many other natural quality measures for reactive
systems. These include:

• the size of the reachable state space (either of the synthesized strategy, or of the solution that
includes the specification circuit),
• the reaction time to certain actions/inputs of the environment, and
• more complex measures that assign a cost to certain actions of the system, e.g. a measure for

energy-efficiency.

Specialized synthesis approaches that optimize a solution with respect to these measures exist [9,
17–19, 33, 60]. We want to discuss at the SYNT workshop whether any of them should be a standard
quality measure in future competitions, or whether we should use optimization towards them as special
challenges for some competitions.

6.4 Witnesses for Correctness

The problems we consider in SYNTCOMP are realizability of a specification and synthesis of a solu-
tion. While the production of solutions is optional in some other subfields of automated reasoning and
computer-aided verification, it is at the heart of SYNTCOMP. Because of this, solutions themselves are
natural witnesses for the correctness of a “realizable” statement. To verify that a solution is correct, it
can be model checked against the specification.

However, there are a number of problems with this approach:

1. solutions of the synthesis problem can only be used as witnesses for correctness if the specification
is realizable. If it is unrealizable, SYNTCOMP thus far did not require any witness of correctness.

2. model checking may not be easy for complex solutions and specifications. Even for pure safety
specifications, we had a number of solutions in SYNTCOMP 2014 that could not be model
checked, and an increased number in 2015.

In the following, we present some ideas how to handle these problems. Note that the proposed
solutions are orthogonal and could be combined.

Witnesses for Unrealizability (Counter-strategies): To solve problem 1, the competition could in-
clude (either by default, or as separate track, or as a challenge) the computation of counter-strategies for
unrealizable specifications.

The easiest way to investigate the performance of tools on this task would be to run the tool on the
negated the specification and require a Moore-type implementation (instead of the usual Mealy-type).
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However, combining the two tasks gives even more meaningful results, as in general we will not know
whether our specification is realizable or not, and we want a witness of the fact regardless of the outcome.

Comprehensive Witnesses for Effective Correctness Proofs: Based on our findings in SYNTCOMP
2014 and 2015, we already introduced this year the possibility that tools (in the AIGER-based safety
track) can give additional witness information that will make it easier to check correctness of the provided
solution. For safety specifications, this information can simply be an inductive invariant of the produced
solution, i.e., a set of states that does not contain error states and is such that the produced solution
will never leave the set. The winning region of the system (computed by the standard fixpoint-based
algorithm for safety games) is an example of an inductive invariant. In SYNTCOMP 2016, we allow that
such an invariant is provided by the tool (also in the AIGER format), and we expect that this will solve
the problems of verifying more complex solutions.

For specifications in LTL or GR(1), we expect the problem of verifiability to be even worse. Further-
more, comprehensive witnesses also need to contain more information if specifications are not restricted
to safety, but may also contain liveness properties. Since the hardest part of the verification of liveness
properties is essentially the construction of (some form of) suitable ranking function, it would be good
if this ranking function could already be supplied by the synthesis tool. In case of GR(1), such rank-
ing functions could probably have a rather simple form, which might boil down to a fixed unrolling of
liveness properties and then effectively checking a safety property.

6.5 Technical Setup

Both SYNTCOMP 2015 and 2016 were run at Saarland University, on a small set of machines that were
acquired specifically for this purpose. The benefit of this approach is that we were able to tailor the
computers to the needs of our competition, which is CPU- and memory-intensive, but does not have a
focus on parallelization. For instance, since none of the tools in the competition used more than 3 or 4
cores (in SYNTCOMP 2014 and 2015, respectively), we had a huge benefit from moving from machines
with 16 CPU cores, but low sequential speed (in 2014), to machines with only 4 CPU cores, but nearly
twice the sequential speed (in 2015 and 2016). Moreover, the organizers have full control over these
machines (as opposed to machines that are operated and serviced by a third party), which makes the
execution of the competition easier and more predictable.

However, the reduced number of available competition servers was already an issue last year. To cope
with the problem, we reduced the number of benchmark instances that were tested in the competition
overall.4 Presumably, the capacity of the competition servers will be at its limit this year, and we probably
have to reduce the number of benchmark instances per track to adjust for the additional tracks that are
introduced this year. A bigger computing capacity is therefore desirable and possibly necessary.

This could be achieved in different ways, each with their own benefits and downsides. Increasing
the number of machines in the current setup requires dedicated funding and local infrastructure, which
may be hard to justify for a service that only runs 2-3 months per year. The other option is to use
third-party machines, for example those provided by the StarExec platform [54]. The benefit would be
essentially unlimited compute capacity, while the downside would be that we give up complete control
over the machines and the execution of the competition, and have to adjust our technical setup to the
infrastructure of that service (to a degree that is currently unknown to us).

4In fact, we significantly reduced the number from 569 to 250 in the realizability track, while increasing the number from
157 to 239 instances in the synthesis track.
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7 Conclusions

The Reactive Synthesis Competition SYNTCOMP has been held annually since 2014. SYNTCOMP
2016 presents the biggest extension of the competition thus far, introducing additional tracks based on a
high-level temporal logic specification format. SYNTCOMP is designed as a long-term effort that should
be guided by feedback from the reactive synthesis community. In addition to the design of SYNTCOMP
2016, we have presented an overview of possible changes and extensions of the competition that could
be considered in the future, and are looking forward to discuss the future of SYNTCOMP with the
participants of SYNT 2016.
Acknowledgements. We thank Rüdiger Ehlers, Ayrat Khalimov, Felix Klein, Andrey Kupriyanov, Kim Larsen,
Nir Piterman, Markus Rabe, and Leander Tentrup for interesting suggestions for the future of SYNTCOMP (and
apologize if we forgot someone).
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