
SYNT 2015
Workshop on Synthesis

July 18, 2015 (collocated with CAV 2015)

PRE-Proceedings

The papers in the present volume are to be presented at SYNT 2015 on July 18, 2015. They
are not final versions of papers. When referencing these papers, please consult the EPTCS
POST-proceedings of SYNT 2015 available from http://www.eptcs.org/.

http://www.eptcs.org/

Preface

This volume contains the papers presented at SYNT 2015: 4th Workshop on Synthesis held on
July 17, 2015 in San Francisco.

Each submission was reviewed by at least 3, and on the average 3.8, program committee
members. The committee decided to accept 5 papers. The program also includes 2 invited talks,
by Sumit Gulwani and Aditya Nori and 2 invited presentations of synthesis competitions.

We are grateful to our sponsor, the project ExCAPE: Expeditions in Computer Augmented
Program Engineering.

July 12, 2015
Lausanne

Pavol Cerny
Viktor Kuncak

Madhusudan P.

Table of Contents

Programming by Examples applied to Data Manipulation . 1
Sumit Gulwani

Probabilistic Programming: Algorithms, Implementation and Synthesis 2
Aditya Nori

The Second Syntax-Guided Synthesis Competition (SyGuS-COMP 2015) 3
Rajeev Alur, Dana Fisman, Rishabh Singh and Armando Solar-Lezama

The Second Reactive Synthesis Competition (SYNTCOMP 2015) . 4
Roderick Bloem and Swen Jacobs

Synthesizing a Lego Forklift Controller in GR(1): A Case Study . 5
Shahar Maoz and Jan Oliver Ringert

A multi-paradigm language for reactive synthesis . 20
Ioannis Filippidis, Richard M. Murray and Gerard J. Holzmann

Compositional Algorithms for Succinct Safety Games . 45
Romain Brenguier, Guillermo Perez, Jean-Francois Raskin and Ocan Sankur

Specification Format for Reactive Synthesis Problems . 60
Ayrat Khalimov

The complexity of approximations for epistemic synthesis . 68
Xiaowei Huang and Ron Van Der Meyden

Program Committee

Pavol Cerny University of Colorado Boulder
Colin De-La-Higuera
Rüdiger Ehlers University of Bremen
Bernd Finkbeiner Saarland University
Dana Fisman University of Pennsylvania
Carlo A. Furia ETH Zurich
Barbara Jobstmann EPFL, Jasper DA, and CNRS-Verimag
Viktor Kuncak EPFL
P. Madhusudan University of Illinois at Urbana-Champaign
Daniel Neider RWTH Aachen
Doron Peled Bar Ilan University
Ingo Pill Institute for Software Technology, TU Graz
Ruzica Piskac Yale University
Arjun Radhakrishna University of Pennsylvania
Leonid Ryzhyk Carnegie Mellon University
Sven Schewe University of Liverpool
Ute Schmid Faculty Information Systems and Applied Computer Science,

University of Bamberg
Johann Schumann SGT, Inc/NASA Ames
Rishabh Singh MIT
Douglas Smith Kestrel Institute
Armando Solar-Lezama MIT
Eran Yahav Technion
Steve Zdancewic University of Pennsylvania

Submitted to:
SYNT 2015, Workshop on Synthesis

c© Sumit Gulwani
This work is licensed under the
Creative Commons Attribution License.

Programming by Examples applied to Data Manipulation
(Invited Talk)

Sumit Gulwani
Principal Researcher @ Microsoft Research

Adjunct Faculty @ IIT Kanpur

Affiliate Faculty @ Univ. of Washington

sumitg@microsoft.com

Programming by Examples (PBE) involves synthesizing intended programs in an underlying domain-
specific language from example based specifications (Espec). In this talk, I will formalize our notion
of Espec and describe some principles behind designing appropriate domain-specific languages. A
key technical challenge in PBE is to search for programs that are consistent with the Espec provided
by the user. We have developed a divide-and-conquer based search paradigm that leverages deduc-
tive rules and version space algebras to achieve real time efficiency. Another technical challenge in
PBE is to resolve the ambiguity that is inherent in the Espec. We use machine learning based ranking
techniques to predict an intended program within a set of programs that are consistent with the Es-
pec. We also leverage active-learning based user interaction models to help resolve ambiguity in the
Espec. In this talk, I will demo few PBE technologies (FlashFill, FlashExtract, and FlashRelate) that
have been developed using these principles for the domain of data manipulation. These technologies
are useful for data scientists who typically spend 80% of their time cleaning data, and for 99% of
those end users who do not know programming.

SYNT 2015 Informal PRE-proceedings, Page 1

Probabilistic Programming: Algorithms,

Implementation and Synthesis

Aditya V. Nori
Microsoft Research

adityan@microsoft.com

June 15, 2015

Recent years have seen a huge shift in the kind of programs that most pro-
grammers write. Programs are increasingly data driven instead of being algo-
rithm driven. They use various forms of machine learning techniques to build
models from data, for the purpose of decision making. Indeed, search engines,
social networks, speech recognition, computer vision, and applications that use
data from clinical trials, biological experiments, and sensors, are all examples
of data driven programs.

We use the term “probabilistic programs” to refer to data driven programs
that are written using higher-level abstractions. Though they span various ap-
plication domains, all data driven programs have to deal with uncertainty in the
data, and face similar issues in design, debugging, optimization and deployment.

In this talk, we describe connections this research area called “Probabilistic
Programming” has with programming languages and software engineering—this
includes language design, static and dynamic analysius of programs, and pro-
gram synthesis. We survey current state of the art and speculate on promising
directions for future research.

1

SYNT 2015 Informal PRE-proceedings, Page 2

The Second Syntax-Guided Synthesis
Competition (SyGuS-COMP 2015)

Rajeev Alur1, Dana Fisman1, Rishabh Singh2, and Armando Solar-Lezama3 ?

1 University of Pennsylvania
2 Microsoft Research

3 Massachusetts Institute of Technology

Abstract. Syntax-Guided Synthesis (SyGuS) is the computational prob-
lem of finding an implementation f that meets both a semantic constraint
given by a logical formula ϕ in a background theory T , and a syntac-
tic constraint given by a grammar G, which specifies the allowed set of
candidate implementations. Such a synthesis problem can be formally
defined in SyGuS-IF, a language that is built on top of SMT-LIB.
The Syntax-Guided Synthesis Competition (SyGuS-COMP) is an effort
to facilitate, bring together and accelerate research and development of
efficient solvers for SyGuS by providing a platform for evaluating differ-
ent synthesis techniques on a comprehensive set of benchmarks. In this
year’s competition we added two specialized tracks: a track for condi-
tional linear arithmetic, where the grammar need not be specified and is
implicitly assumed to be that of the LIA logic of SMT-LIB, and a track
for invariant synthesis problems, with special constructs conforming to
the structure of an invariant synthesis problem.

? This research was supported by NSF Expeditions in Computing award CCF-1138996

SYNT 2015 Informal PRE-proceedings, Page 3

Submitted to:
SYNT 2015

c© R. Bloem & S. Jacobs
This work is licensed under the
Creative Commons Attribution License.

The Second Reactive Synthesis Competition
(SYNTCOMP 2015)

Roderick Bloem Swen Jacobs

Graz University of Technology Saarland University
Graz, Austria Saarbrücken, Germany

The reactive synthesis competition (SYNTCOMP) is intended to stimulate and guide advances in
the design and application of synthesis procedures for reactive systems in hardware and software. The
foundation of stimulating such advancement is a common benchmark format for synthesis problems, and
an extensive benchmark library in this format. The first SYNTCOMP was held in 2014.

We report on the design and results of the second SYNTCOMP, held in 2015. We have extended our
benchmark library with 6 completely new sets of benchmarks, and additional challenging instances for 4
of the benchmark sets that were already used last year. Overall, we have added more than 2000 problem
instances to the existing 569 benchmarks, including many difficult instances. To enhance the analysis
of experimental results, we introduce an extension of our benchmark format with meta-information tags
that can contain for example a difficulty rating or a reference size for solutions of the benchmark.

Tools are evaluated on a set of 250 benchmarks, selected to provide a good coverage of benchmarks
from all classes and difficulties. Like in the previous year, the competition is divided into four different
tracks: two tracks for solving the realizability problem and two tracks for synthesis, with one of each
in parallel and one in sequential execution mode. In contrast to the previous year, ranking of tools is
mainly based on the number of problems that can be solved within the timeout of one hour. Solving
time is only used as a tie-breaker, and in the synthesis tracks the size of synthesized artifacts gives raise
to an additional quality ranking. Finally, we describe the entrants into SYNTCOMP 2015, as well as
the results of our experimental evaluation. In our analysis, we emphasize progress over the tools that
participated last year.

SYNT 2015 Informal PRE-proceedings, Page 4

Submitted to:
SYNT 2015

c© S. Maoz & J.O. Ringert
This work is licensed under the
Creative Commons Attribution License.

Synthesizing a Lego Forklift Controller in GR(1):
A Case Study

Shahar Maoz Jan Oliver Ringert
School of Computer Science

Tel Aviv University

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system
from a given specification. GR(1) is a well-known fragment of linear temporal logic (LTL) where
synthesis is possible using a polynomial symbolic algorithm. We conducted a case study to learn
about the challenges that software engineers may face when using GR(1) synthesis for the develop-
ment of a reactive robotic system. In the case study we developed two variants of a forklift controller,
deployed on a Lego robot. The case study employs LTL specification patterns as an extension of the
GR(1) specification language, an examination of two specification variants for execution scheduling,
traceability from the synthesized controller to constraints in the specification, and generated counter
strategies to support understanding reasons for unrealizability. We present the specifications we de-
veloped, our observations, and challenges faced during the case study.

1 Motivation and Context

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive system from a
given specification, if one exists. The time complexity for synthesis of a reactive system from a linear
temporal logic (LTL) formula is double exponential in the length of the formula [18]. However, limited
fragments of LTL together with symbolic implementations exhibit more practical time complexities. One
such fragment is General Reactivity of rank 1 (GR(1)), where synthesis is possible using a polynomial
symbolic algorithm [3, 17].

The availability of efficient synthesis algorithms, as in the case of GR(1), and the guarantee of imple-
mentations being correct by construction, motivate applications in software engineering. GR(1) synthesis
has been recently used in various application domains, including robotics [11], scenario-based specifica-
tions [14], aspect languages [13], and event-based behavior models [4], to name a few.

We conducted a case study to explore the benefits and current challenges of using existing tools and
implementations of GR(1) synthesis to develop a reactive system. The research objectives of our case
study were to learn about the following questions:

• What are challenges faced when using a GR(1) synthesis tool to synthesize a software controller
for a robotic system?

• Is the use of LTL specification patterns helpful to formulate assumptions and guarantees?

• Is it easy to understand reasons for unrealizability?

• Do successfully synthesized controllers work as expected? If not, how can one understand why?

Our goal is to learn what reactive GR(1) synthesis offers and what it lacks to be successfully applied
by software engineers in a model-based development process. On a wider scale, we want to understand
what is required to make a synthesis specification language and synthesis tools available and accepted
by reactive systems software engineers.

SYNT 2015 Informal PRE-proceedings, Page 5

2 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

It is important to note that our case study concerns the initial development of a specification and
synthesized controller. This case study was not about applying new methods and tricks for specification
rewriting to make synthesis faster or to optimize the synthesized controller, e.g., as in case studies of
the AMBA AHB protocol [2, 7]. When including excerpts of the developed specifications in this paper
we decided to not rewrite LTL formulas in a more clever way but to present them as written during
specification development.

The context of our case study is the synthesis of software for a robotic system. Synthesis is limited
to a single controller that interacts with its environment. The specification is written and analyzed by a
software engineer and the synthesized controller is used without modification for automatic, direct code
generation and deployment to a robotic system. The tools used in our case study are:

• a symbolic GR(1) synthesis algorithm implementation from [3] using the JTLV framework [19]
including the synthesis of counter strategies for unrealizable specifications;

• the AspectLTL [13] input language, with syntax similar to SMV, for specifying environment as-
sumptions and system guarantees, with syntax highlighting and code completion;

• an implementation for traceability between a synthesized controller and its temporal specification
based on [16]; and

• a catalog of LTL specification patterns [5] and their GR(1) templates [12].

The GR(1) synthesis problem is to find a controller that realizes a given specification over a set of
environment variables and a set of system variables. A GR(1) specification consists of:

• constraints on initial assignments (constraints without temporal operators),

• safety constraints over current and next assignments (constraints of the form G (exp) where the
expression exp is limited to past time temporal operators and the next operator), and

• liveness constraints, more specifically justice constraints, that should hold infinitely often (con-
straints of the form G F (exp) where the expression exp has no temporal operators).

All constraints are either assumptions, i.e., obligations of the environment, or guarantees, i.e., obli-
gations of the system. Intuitively, if all assumptions are satisfied by the environment a synthesized
controller satisfies all guarantees. If no such controller exists, the specification is called unrealizable. A
detailed introduction to LTL, past time LTL, and GR(1) synthesis is available from [3].

In this case study we use an extension of the GR(1) synthesis problem where assumptions and guar-
antees may also be specified using LTL specification patterns [5]. The extension is described in [12].

Apart from the above GR(1) synthesis implementations we have used the MontiArcAutomaton lan-
guage [21] for modeling the components of the robotic system and as a concrete syntax for the syn-
thesized controllers. We have used code generators from this intermediate representation to Java for
deployment to the Lego Mindstorms NXT platform1.

2 Case Design and Variant

The task of the case study was to develop a specification for a Lego forklift robot shown on the left side
of Figure 1. The forklift is an actual Lego robot2 we have constructed and experimented with in our lab.

1LEGO Mindstorms website: http://www.lego.com/en-us/mindstorms
2Robot based on these building instructions: http://www.nxtprograms.com/NXT2/forklift/steps.html

SYNT 2015 Informal PRE-proceedings, Page 6

S. Maoz & J.O. Ringert 3

ForkLift

StationSensor

stationSense

LiftMotor(A)

mLift

Controller

MontiArcAutomaton

DistanceSensor

distSense

DistanceSensor

cargoSense

Button

emgOffButton

Motor

mRight

Motor

mLeft

boolean

station

Distance

sense

Distance

cargo

boolean

emgOff

boolean

liftAck

MotorCmd

mLeft

MotorCmd

mRight

LiftCmd

lift

(a) (b)

Figure 1: (a) The Lego forklift robot with four sensors and three actuators. (b) The logical software
architecture of the robot with wrappers for sensors and actuators and the main component Controller
to be synthesized (data types of input and output ports defined in Figure 2). The dashed elements describe
a second variant with feedback of the lift motor to acknowledge completion of lifting or dropping the
fork.

enum

MotorCmd

FWD

STP

BWD

enum

LiftCmd

LIFT

DROP

NIL

enum

Distance

CLOSE

FAR

Figure 2: Data type definitions for ports of component Controller shown in Figure 1

A criterion for success of synthesis was not only to obtain and inspect a synthesized controller but also
to deploy it to the real robot and see that its behavior makes sense.

The forklift shown in Figure 1 has a sensor to determine whether it is at a station, two distance
sensors to detect obstacles and cargo, and an emergency button to stop it. It has two motors to turn
the left and right wheels and one motor to lift the fork. The case definition consists of an initial set of
informal requirements for the behavior of the forklift:

1. Do not run into obstacles.

2. Only pick up or drop cargo at stations.

3. Do not attempt to lift cargo if cargo is lifted.

4. Always keep on delivering cargo.

5. Never drop cargo at the station where it was picked up.

6. Stop moving if emergency off switch is pressed.

Formalization and refinement of these requirements into guarantees and the elicitation of suitable as-
sumptions was part of the case study execution.

Together with the above list of informal requirements the logical software architecture of the forklift
was defined before case study execution. It is depicted as a component and connector model in Fig-
ure 1 (b). The components on the left side are hardware wrappers that read sensor values and publish

SYNT 2015 Informal PRE-proceedings, Page 7

4 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

them as messages on their output ports. The output ports of the sensor components are connected to
input ports of component Controller. The output ports of component Controller are connected
to three components on the right that receive commands and encapsulate access to the motors of the fork-
lift. The datatypes of input and output ports as well as their names are written on the ports of component
Controller. Datatypes other than boolean are defined as enumerations in Figure 2.

The execution of the robot is performed in a cycle: read sensor data, execute controller, perform ac-
tions. When deploying the synthesized controller on the forklift robot the output produced by transitions
between states of the controller manipulates the robots environment through its actuators. We decided
on two scheduling variants to integrate the synthesized controller and the real world.

V1.Delayed In the first variant the execution of transitions of the synthesized controller is delayed to
give the physical robot enough time to execute tasks of the actuators. The delay has to be large
enough to, e.g., completely lift or drop the fork, complete a 90 degrees turn, or back up from an
obstacle. We set the delay to 2000ms.

V2.Continuous In the second variant the controller is executed continuously without any delay. This
variant uses a technique inspired by Raman et al. [20] to synthesize a reactive controller for con-
tinuous control. The setting requires the controller to be aware whether actions have completed
or not. In our case driving actions get feedback from distance sensors but an additional feedback
signal had to be added from the lift motor to acknowledge completion of its actions (shown as a
dashed line in Figure 1).

Depending on the scheduler and actuator implementations more variants are possible, e.g., a variant
where the scheduler pauses execution of the synthesized controller while an actuator performs a task
(e.g., similarly by Kress-Gazit et al. [10]).

3 Resulting Specifications

Development of the specifications started with the first variant V1.Delay in 7 versions with incre-
mental addition of features. When the first variant was almost complete the development of variant
V2.Continuous started based on the existing specification. The final specifications for both variants are
available from [22].

The first and common part to both specifications is a schematic translation of the input and output
ports of component Controller shown in Figure 1 to environment variables (VARENV) and system
variables (VAR) declared in Listing 1. The following excerpts of the two specifications refer to variable
names and short names defined in the DEFINE block of Listing 1. The only difference between the
variable declarations for V1.Delay and V2.Continuous is the environment variable liftAck in line 6
added only in variant V2.Continuous.

The two system variants are however very different. The main difference between both systems is
that the first variant of the forklift is scheduled in steps of 2000ms (it waits for 2 seconds after each read
input, compute, write output iteration), while the second variant does not use any delay. To illustrate this
difference: when executing the controller synthesized from V1.Delay without the delay the forklift runs
over cargo it was expected to have lifted up; it may initiate dropping cargo at a station but only completes
dropping it after leaving the station; during this process it detects the dropping cargo as an obstacle and
tries to drive clear from it.

SYNT 2015 Informal PRE-proceedings, Page 8

S. Maoz & J.O. Ringert 5

1 VARENV
2 cargo : { CLEAR, BLOCKED };
3 sense : { CLEAR, BLOCKED };
4 station : boolean;
5 emgOff : boolean;
6 liftAck : boolean; -- only in V2.Continuous
7

8 VAR
9 mLeft : { FWD, STOP, BWD };

10 mRight : { FWD, STOP, BWD };
11 lift : { LIFT, DROP, NIL };
12

13 DEFINE -- defines to ease reading specs
14 backing := mLeft = BWD & mRight = BWD;
15 stopping := mLeft = STOP & mRight = STOP;
16 turning := mLeft = BWD & mRight = FWD | mLeft = FWD & mRight = BWD;
17 forwarding := mLeft = FWD & mRight = FWD;
18 dropping := lift = DROP;
19 lifting := lift = LIFT;

Listing 1: Environment variables (VARENV), system variables (VAR), and definitions of short names
(DEFINE) of the controller to synthesize as an implementation of component Controller from
Figure 1 (b)

3.1 Specifications

We give an overview of both specifications developed as part of the case study. We start with V1.Delay
and later discuss the changes in V2.Continuous compared to V1.Delay.

V1.Delay: Assumptions and Guarantees

The specification document for V1.Delay contains 7 assumptions, 12 guarantees, and 1 auxiliary vari-
able.

Of the 7 assumptions, 1 is a safety constraint, and 6 are LTL specification patterns: 5 instances of the
response pattern P26 and 1 instance of a bounded existence pattern P15 (patterns numbered as appearing
on the website of [5] and in our catalog of GR(1) templates [12]). An example for a typical response
pattern is shown in Listing 2, ll. 1-3. The pattern expresses the assumption that if the robot is backing
or turning it will reach a state where both distance sensors are clear unless it decides to go forward or
stop, i.e., the robot may escape obstacles. A safety assumption about the environment is that the reading
of the sensor station will not change when the forklift is stopping (see Listing 2, ll. 5-6). Another
assumption is formulated using pattern P15 is shown in Listing 2, l. 8-9. It expresses that the robot will
encounter at most two low obstacles between stations.

Of the 12 guarantees of V1.Delay, 1 constrains the initial state, 8 are a safety constraints, 1 is a justice
constraint, and 2 are LTL specification patterns (P09 and P20). One auxiliary variable is defined (we treat
the variable definition and assignments as a special case although the assignments are currently imple-
mented as four safety guarantees). Our current implementation distinguishes manually added auxiliary
variables from other variables by the prefix spec preceding the name of the variable.

The specification uses pattern P09 as a guarantee that the forklift has to leave the station between
lifting cargo and delivering it (Listing 3, ll. 1-2). Another guarantee uses pattern P20 to express that after
leaving a station cargo cannot be dropped until the forklift reaches a station (Listing 3, ll. 4-5).

SYNT 2015 Informal PRE-proceedings, Page 9

6 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

1 ASSUMPTION -- backing or turning clears sensors
2 Globally (backing | turning) leads to
3 ((sense=CLEAR & cargo=CLEAR) | forwarding | stopping)); --P26
4

5 ASSUMPTION -- station does not change when stopping
6 G (stopping -> station = next(station));
7

8 ASSUMPTION -- at most blocked twice between stations
9 After (!atStation) have at most two (lowObstacle) until (atStation); --P15

Listing 2: Three assumptions of variant V1.Delay using LTL specification patterns [5] with equivalent
representations in GR(1) [12]

1 GUARANTEE -- have to leave station to deliver
2 (!atStation) occurs between (lift=LIFT) and (lift=DROP); --P09
3

4 GUARANTEE -- don’t drop cargo after leaving station until arriving
5 Globally (lift!=DROP) after (!atStation) until (atStation) --P20

Listing 3: Two guarantees of of variant V1.Delay using LTL specification patterns [5] with equivalent
representations in GR(1) [12]

1 VAR -- new auxiliary variable to "remember" when cargo is loaded
2 spec_loaded : boolean;
3 GUARANTEE
4 !spec_loaded; -- initial value false
5 G (lifting -> next (spec_loaded)); -- set loaded when lifting
6 G (dropping -> ! next (spec_loaded)); -- unset loaded when dropping
7 G (lift = NIL -> next (spec_loaded) = spec_loaded); -- preserve value

Listing 4: Definition of the auxiliary variable spec loaded

SYNT 2015 Informal PRE-proceedings, Page 10

S. Maoz & J.O. Ringert 7

1 ASSUMPTION -- find station to drop when forwarding (unless backing or stopping)
2 Globally (forwarding & spec_loaded) leads to
3 ((station & cargo=CLEAR) | backing | stopping));
4

5 ASSUMPTION -- find station and cargo when forwarding (unless backing or stopping)
6 Globally (forwarding & !spec_loaded) leads to
7 ((station & cargo=BLOCKED) | backing | stopping));
8

9 GUARANTEE -- do not lift again when cargo is loaded
10 G (spec_loaded -> !lifting);

Listing 5: An assumption and a guarantee of variant V1.Delay using the auxiliary variable spec -
loaded introduced in Listing 3

1 GUARANTEE -- emergency stop
2 G (emgOff -> (stopping & lift=NIL));
3

4 GUARANTEE -- main goal to always eventually deliver cargo
5 G F ((lift = DROP) | emgOff | lowObstacle);

Listing 6: More guarantees of variant V1.Delay: the emergency stop feature and the main justice
constraint of the forklift

In Listing 4 a new auxiliary variable spec loaded is introduced for the purpose of simplifying
the specification. This variable is used by the specifier to keep track on whether the forklift has loaded
cargo or not. The value of the variable is determined by safety constraints. The variable is used in the
specification in both assumptions and guarantees as shown in Listing 5. The assumption in lines 1-3
expresses that if the forklift goes forward and has cargo loaded it will eventually find a station where it
can deliver cargo unless it stops or goes backward.

Two additional guarantees in Listing 6 describe the emergency stop feature of the forklift and the
main justice constraint to always eventually deliver cargo. The main justice constraint of the forklift is
shown in Listing 6, ll. 4-5. It does not only contain the expected lift = DROP, i.e., delivering cargo,
but also the alternatives emgOff and lowObstacle. These alternatives represent environment actions
that if occurring infinitely often liberate the forklift from its obligation.

V2.Continuous: Assumptions and Guarantees

We now describe the differences between the specification of the first variant V1.Delay and the second
variant V2.Continuous of the forklift specifications. The second variant applies a method inspired by
Raman et al. [20] for continuous control. The main idea is to add a new variable for every action which
signals completion of the action. In our case study this method is only necessary for the completion
of lifting and dropping cargo. The environment variable liftAck is added (see Listing 1) to signal
completion of the actions of component LiftMotor (see Figure 1).

The specification document for variant V2.Continuous contains 9 assumptions, 14 guarantees, and
2 auxiliary variable definitions. None of the assumptions or guarantees of V1.Delay were removed, three
assumptions were added, and two guarantees were added.

Of the 2 added assumptions, 1 is a safety constraint, and 1 is an instance of pattern P26. The auxiliary
variable spec waitingForLifting is declared and completely defined in Listing 7, ll. 9-15 in the
same way as spec loaded. The variable is true iff a lifting command was issued and completion
has not been acknowledged yet. The assumption in Listing 8, ll. 1-2 expresses that an acknowledgment

SYNT 2015 Informal PRE-proceedings, Page 11

8 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

1 VAR
2 spec_loaded : boolean;
3 GUARANTEE -- updated assignments of var spec_loaded
4 !spec_loaded;
5 G (liftAck & !spec_loaded -> next(spec_loaded));
6 G (liftAck & spec_loaded -> next(!spec_loaded));
7 G (!liftAck -> spec_loaded = next(spec_loaded));
8

9 VAR -- variable to keep track of waiting for lifting
10 spec_waitingForLifting : boolean;
11 GUARANTEE
12 !spec_waitingForLifting;
13 G ((lift=LIFT | lift=DROP) -> next(spec_waitingForLifting));
14 G (liftAck -> ((lift=LIFT | lift=DROP) | next(!spec_waitingForLifting)));
15 G (!((lift=LIFT | lift=DROP) | liftAck) -> spec_waitingForLifting = next(

spec_waitingForLifting));

Listing 7: Auxiliary variable definitions in V2.Continuous: the assignments of spec loaded were
modified and variable spec waitingForLifting was added

1 ASSUMPTION -- always eventually complete lifting
2 Globally (spec_waitingForLifting) leads to (liftAck);
3

4 ASSUMPTION -- only acknowledge if waiting for it
5 G (next(liftAck) -> (spec_waitingForLifting & !liftAck));

Listing 8: New assumptions added in variant V2.Continuous about acknowledgments of executing the
LIFT and DROP commands

liftAck will eventually follow every waiting. A second assumption ensures that acknowledgments
are only sent if spec waitingForLifting is true. The assignment of variable spec loaded
has been modified. The assignment now depends on the previous value of variable and the new input
liftAck (see ll. 1-6).

Both added guarantees are safety constraints, as shown in Listing 9. The first expresses that the
forklift stops when it waits for the completion of a lifting action (see Listing 9, ll. 1-2), and the second
expresses that it does not issue new lifting commands when waiting for completion (see Listing 9, ll. 4-5).

3.2 Synthesis Times and Controller Sizes

For both variants a controller that implements the specification can be synthesized in a few seconds us-
ing the Java-based BDD engine that comes with JTLV [19]. The sizes of both specification variants are
summarized in the upper half of Table 1. We report the assumption and guarantee constraints, the total
number of variables including auxiliary variables (the state space referred to as N in the time complexity
O(nmN2) of GR(1) synthesis is 2 to the power of the number of Boolean variables required to repre-

1 GUARANTEE -- while lift performs action stop
2 G (spec_waitingForLifting -> stopping);
3

4 GUARANTEE -- do not send another request when waiting for completion
5 G (spec_waitingForLifting -> lift=NIL);

Listing 9: Added guarantees of variant V2.Continuous

SYNT 2015 Informal PRE-proceedings, Page 12

S. Maoz & J.O. Ringert 9

V1.Delay V2.Continuous
Assumptions 1 safety, 2 safety,
(patterns) 5 times P26, P15 6 times P26, P15
Guarantees 1 initial, 8 safety, 1 justice, 1 initial, 8 safety, 1 justice,
(patterns) P09, P20 P09, P20
Boolean Variables 4 environment, 6 system, 5 environment, 6 system,
(auxiliary) 1 manual, 12 pattern 2 manual, 13 pattern
Checking Realizability 0.2 sec 0.7 sec
Controller Construction 1.8 sec 1.3 sec
States of Controller 3412 2888

Table 1: For both variants we report the size of the specification, times for checking realizability and
controller construction in seconds, and the size of a synthesized controller.

sent environment, system, and auxiliary variables). Environment and system variables amount to 210 in
V1.Delay and to 211 in V2.Continuous. For the specifications of variant V1.Delay and V2.Continuous
developed in this case study 13 and 15 auxiliary variables were automatically (and implicitly) added to
support specification patterns or explicitly added as auxiliary variables in the specification. The GR(1)
synthesis problem after the translation of patterns to GR(1), via the templates described in [12], had 6
environment and 3 system justice goals in variant V1.Delay and 7 environment and 3 system justice
goals in variant V2.Continuous.

In the lower half of Table 1 we report the time it took the synthesis algorithm to decide realizability
and the additional time consumed by the controller construction phase, in seconds. Times are shown as
reported by JTLV running on an ordinary laptop with Java 7, Windows 7 64bit, 8GB RAM, and an Intel
i7 CPU with 3.0 GHz. Synthesis times for all intermediate versions during specification development
confirmed that synthesis is conveniently fast.

3.3 Running Synthesized Controllers on the Forklift

We used code generators implemented in our group for the NXJ LeJOS platform3 to generate code and
directly deploy the software components shown in Figure 1 (b) to the LEGO NXT forklift shown in
Figure 1 (a). The components StationSensor (light value measured on the ground), Distance-
Sensor (ultrasonic distance sensor), and Button (touch sensor) have generic implementations in Java
that wrap the LeJOS sensor API. The components Motor and LiftMotor have generic implementa-
tions that wrap the LeJOS motor API.

To execute the synthesized controller of variant V1.Delay on the forklift we had to adapt a set of
platform specific parameters: number of degrees motors mLeft and mRight rotate backward and for-
ward, number of degrees the lifting motor rotates, distance to obstacles detected by distSense, and
distance to cargo detected by cargoSense. In the second variant V2.Continuous the motors mLeft
and mRight do not rotate a fixed amount of degrees but move continuously.

The components on the robot are executed in execution cycles. Every execution cycle starts with
reading all sensor values, executes the controller, and ends with executing all actuators. In variant
V1.Delay we added a fixed delay of 2000ms after the execution of the actuators to allow the forklift
finishing all actions. In variant V2.Continuous a delay was not added and the execution time of one

3Website of LeJOS NXJ: http://www.lejos.org/nxj.php

SYNT 2015 Informal PRE-proceedings, Page 13

10 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

cycle on the robot was around 50ms.
We observed that variant V1.Delay provided more reliable sensor readings than V2.Continuous

because it measured values after completing its actions in a resting position. For variant V2.Continuous
erroneous sensor readings had serious effects. As one example, when the station sensor falsely detected
a station the forklift stopped to drop cargo. A second reading when stopped did not report the station and
thus caused a violation of an environment assumption (Listing 2, ll. 5-6), and so the forklift went into an
infinite loop of stopping. As another example, unstable readings of the ultrasonic sensor led to detecting
and not detecting obstacles at the sensor’s threshold level. This happened when the forklift was not at a
station and led to a violation of the assumption that at most two obstacles occur (Listing 2, ll. 8-9). In
this case the forklift kept going forward in an infinite loop not stopping at obstacles anymore.

Some works have addressed the challenge of synthesizing controllers which are more robust to as-
sumption violations, e.g., Ehlers and Topcu [6] suggested an approach where the synthesized controller
allows violations of safety assumptions up to some constant number of times.

4 Observations and Challenges

We now report some of our observations and challenges faced during specification development.

O1: Differences between V1.Delay and V2.Continuous

The way that the synthesized controllers of variants V1.Delay and V2.Continuous are executed and
interact with their environment is fundamentally different. Thus, we found it surprising that their GR(1)
specifications are still very similar. Only three assumptions and two guarantees were added. One reason
for the similarity is that V2.Continuous is based on V1.Delay. It is still interesting that most existing
assumptions and guarantees also remain valid for the second variant, although it is based on a continuous
execution scheduling, without delays. The main reason we did not have to adapt many assumptions
seems to be the use of the response patterns already in V1.Delay (five instances) instead of explicitly
referring to immediate successor states.

O2: Manually adding auxiliary variables helpful

During the development of the two specifications we found it very helpful to add auxiliary variables, as
they assisted us in making relevant states explicit. As an example, the auxiliary variable spec loaded
(Listing 4) is defined to be true iff the forklift has loaded cargo. This information is derived and not
provided as a sensor input. The variable spec loaded appears in two assumptions and two guarantees.
The past LTL formula

PREV (lift!=DROP SINCE lift=LIFT)

could replace the auxiliary variable but we believe that it helps readability of the formulas to make the
property explicit with a new name.

Technically, adding an auxiliary variable to the specification requires that its value is determined
by complete and deterministic safety constraints. This mechanism is discussed by Bloem et al. [3] for
supporting past LTL in GR(1) synthesis.

SYNT 2015 Informal PRE-proceedings, Page 14

S. Maoz & J.O. Ringert 11

O3: Support for patterns helpful

LTL specification patterns [5] allow one to express high-level temporal patterns in a convenient way that
are otherwise complicated and error-prone to express in LTL. In the limited fragment of GR(1) correctly
expressing these behaviors becomes even more complicated due to the limitation of available operators
and no nesting. We provide GR(1) templates for 52 of the 55 LTL specification patterns [12].

During the case study we found that using patterns is very helpful for expressing more complicated
temporal properties. Moreover, using patterns gave us better confidence that the specification matches
our intention.

A specifically useful pattern in assumptions was the response pattern P26. Instances of this pattern
appeared as 5 out of 7 assumptions in V1.Delay (6 out of 9 in V2.Continuous). This pattern seems to
be well suited for describing robotic systems where one should assume that some actions of actuators
eventually have an impact on sensor values.

It is important to note that the addition of patterns comes at a price. Most patterns cannot be expressed
without the addition of auxiliary variables. In both variants of our case study more than half of the
Boolean variables encoding the statespace were auxiliary variables, implicitly added in the translation
of the patterns to the GR(1) form based on our templates. The resulting synthesis problems of the case
study are however still solved in a few seconds.

C1: Environment vs. real environment

During the case study it turned out that it is difficult to use assumptions to describe realistic environments.
A very simple example that appeared early during development of V1.Delay is the assumption that
turning of the robot will make the distance sensor signal clear:

G (turning -> next(sense=CLEAR));

Our inspection of the synthesized controller concluded positively. When deploying the controller to the
forklift it turned and stopped in a corner of the room. The assumption was too strong for the forklift’s
real environment. In a corner, turning 90 degrees leaves the robot facing another wall. The response pat-
tern Globally (turning) leads to (sense=CLEAR) would solve this particular problem
but the expressed assumption is still too strong and we observed another undesired behavior: after being
blocked the forklift turned once but then stopped and waited for the obstacle to disappear. A corrected
version (also handling driving backwards) is shown in Listing 2, ll. 1-3.

A different challenge appeared when adding a guarantee that the robot should pick up cargo and not
drop it between stations:

Globally (lift!=DROP SINCE lift=LIFT)

after (!atStation) until (atStation);

The addition of this guarantee made the specification unrealizable. The past time formula lift!=DROP
SINCE lift=LIFT embedded in the specification pattern requires that the forklift leaves a station only
when cargo has been picked up. We decided that it might be reasonable to assume that at every station
the forklift may pick up cargo. It turned out too complicated for us to formulate this assumption in
GR(1). A possible assumption might require encoding the area of each station and valid navigation of
the forklift to allow it to explore the station for cargo. Finally, we weakened the above guarantee to the
one in Listing 3, ll. 4-5. The modified version allows the forklift to leave stations without cargo.

SYNT 2015 Informal PRE-proceedings, Page 15

12 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

To summarize, in the case study we faced both the challenge of formulating assumptions that are too
strong for the real environment of the forklift and the challenge of not being able to formulate reasonable
assumptions due to difficulties in expressing them. Both cases are not easy to address. Specifically the
first can lead to successful synthesis of a controller that fails in a real environment.

C2: Undesired realizable case: system forces environment to violate assumptions

When the system can force the environment to violate its assumptions the controller often does not act
as the engineer would have expected it to act. Consider the following two assumptions from an early
version of V1.Delay. The first assumption is that if the forklift does not move the station sensor value
will not change. The second assumption is that the forklift will eventually leave a station if it moves
forward.

G (stopping -> station = next(station));

Globally (forwarding) leads to (!station);

We synthesized a controller and in some cases the forklift running the controller stopped and did
not continue to move. To understand this behavior in the example above we enabled our synthesis
tool to annotate every transition with one of three reasons for it to be included in the controller. The
possible reasons are [3]: satisfying a justice constraint, working towards satisfying a justice constraint,
or preventing a justice constraint of the environment. The annotation of each transition of the controller
includes the justice constraint from the specification (see [16] for more details about traceability). Using
this traceability information, which links transitions in the controller to elements of the specification,
we learned the reasons for the synthesized strategy of the controller. We found out that in the example
above, the forklift goes forward on a station. If it is still on the station in the next step it stops forever
and thus prevents the environment from satisfying the justice constraint of the response pattern.

In this simple example with a controller of 80 states we were able to find an explanation we could
trace to the specification and modify the response pattern as shown in Listing 5, ll. 5-7. It would have
been helpful to automatically find cases where the system forces the environment to violate assumptions
for an engineer to decide whether this behavior is desired or not. Towards the end of our specification
development process synthesized controllers simply became too large for manual inspection.

Klein and Pnueli [8] defined environments where the system cannot force a violation as well-separated.
They suggest a modified GR(1) game to check whether an environment is well-separated. This may be a
direction towards addressing this challenge.

C3: Unrealizable case

In many cases adding a new feature expressed as a set of assumptions and guarantees led to an unre-
alizable specification. In some cases we were able to find mistakes quickly in the added assumptions
and guarantees. Many times we initially forgot to add alternatives in safety constraints leading to their
unsatisfiability by the system. In more complicated cases we asked our tool to synthesize a counter strat-
egy that represents an environment forcing all system strategies to lose. We (interactively, as described
in [16, 15]) executed moves of our intended system and learned where our strategy loses against the
environment. This often led to better understanding of the reasons for unrealizability.

In some cases it was however very difficult to understand the reason for unrealizability, trace it back
to the specification, and fix it. As an example, consider the introduction of the new environment variable

SYNT 2015 Informal PRE-proceedings, Page 16

S. Maoz & J.O. Ringert 13

liftAck and the auxiliary variable spec waitingForLifting (see Listing 7). We added the
assumption that lifting can only be acknowledged if the controller is expecting it:

G (next(liftAck) -> spec waitingForLifting);

The specification of variant V2.Continuous with the above assumption is unrealizable. A synthe-
sized counter strategy has 3735 states. The Java code generated by our synthesis tool for interactive
exploration of the counter strategy failed to compile due to its size. Printing the counter strategy includ-
ing information on successors disabled by safety properties ran out of memory. It was not easily possible
to reduce the synthesis problem by removing irrelevant parts from the specification. Lifting of cargo
is related to movement of the motors and the cargo sensor. The movement of motors is related to the
distance sensor.

We manually executed the counter strategy by inspecting the generated text output. Many steps
were repetitive (long chains of apparently similar states) as we were working towards forcing the envi-
ronment to present a station with cargo, and after lifting forcing it to acknowledge lifting. Right after
acknowledging lifting the environment acknowledged lifting again. The double acknowledgment set
and immediately afterwards disabled the variable spec loaded (see Listing 7, ll. 5-6). The double
acknowledgment was possible because liftAck disables spec waitingForLifting only in the
next step (see Listing 7, ll. 14). We adapted the above assumption as shown in Listing 8, l. 5.

While counter strategies help understanding reasons of unrealizability their handling by our tools
turned out to be insufficient for larger specifications. In the future we plan to examine how recent work
by others, e.g., [1, 9], may help in addressing the unrealizability challenge.

5 Conclusion

We have presented a case study of the development of a software controller for a forklift robot using
GR(1) synthesis tools. Rather than examining how to write most elegant and efficient specifications we
focused on challenges for software engineers in the process of specification development. We showed the
specifications of two variants of the controller. On the one hand, our observations are that extensions of
the specification language with auxiliary variables and higher-level specification patterns support writing
specifications with better confidence. On the other hand, with growing specification size, understanding
reasons for synthesized behavior and for unrealizability turned out to be major challenges.

This case study is part of our larger project on bridging the gap between the theory and algorithms
of reactive synthesis on the one hand and software engineering practice on the other. In many aspects it
demonstrates the different challenges awaiting us.

Acknowledgments The authors thank the anonymous reviewers of the SYNT 2015 workshop for their
helpful comments. Jan O. Ringert acknowledges support from a postdoctoral Minerva Fellowship,
funded by the German Federal Ministry for Education and Research. This project has received fund-
ing from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 638049, SYNTECH).

References
[1] Rajeev Alur, Salar Moarref & Ufuk Topcu (2013): Counter-strategy guided refinement of GR(1) tempo-

ral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,

SYNT 2015 Informal PRE-proceedings, Page 17

14 Synthesizing a Lego Forklift Controller in GR(1):A Case Study

USA, October 20-23, 2013, IEEE, pp. 26–33. Available at http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=6679387.

[2] Roderick Bloem, Swen Jacobs & Ayrat Khalimov (2014): Parameterized Synthesis Case Study: AMBA AHB.
In Krishnendu Chatterjee, Rüdiger Ehlers & Susmit Jha, editors: Proceedings 3rd Workshop on Synthesis,
SYNT 2014, Vienna, Austria, July 23-24, 2014., EPTCS 157, pp. 68–83. Available at http://dx.doi.
org/10.4204/EPTCS.157.9.

[3] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012): Synthesis of Re-
active(1) Designs. J. Comput. Syst. Sci. 78(3), pp. 911–938. Available at http://dx.doi.org/10.
1016/j.jcss.2011.08.007.

[4] Nicolás D’Ippolito, Vı́ctor A. Braberman, Nir Piterman & Sebastián Uchitel (2013): Synthesizing nonanoma-
lous event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol. 22(1), p. 9. Available at
http://doi.acm.org/10.1145/2430536.2430543.

[5] Matthew B. Dwyer, George S. Avrunin & James C. Corbett (1999): Patterns in Property Specifications for
Finite-State Verification. In: ICSE, ACM, pp. 411–420.

[6] Rüdiger Ehlers & Ufuk Topcu (2014): Resilience to intermittent assumption violations in reactive synthesis.
In Martin Fränzle & John Lygeros, editors: 17th International Conference on Hybrid Systems: Computa-
tion and Control (part of CPS Week), HSCC’14, Berlin, Germany, April 15-17, 2014, ACM, pp. 203–212,
doi:10.1145/2562059.2562128. Available at http://doi.acm.org/10.1145/2562059.2562128.

[7] Yashdeep Godhal, Krishnendu Chatterjee & Thomas A. Henzinger (2013): Synthesis of AMBA AHB from
formal specification: a case study. STTT 15(5-6), pp. 585–601, doi:10.1007/s10009-011-0207-9. Available
at http://dx.doi.org/10.1007/s10009-011-0207-9.

[8] Uri Klein & Amir Pnueli (2010): Revisiting Synthesis of GR(1) Specifications. In Sharon Barner, Ian G.
Harris, Daniel Kroening & Orna Raz, editors: Hardware and Software: Verification and Testing - 6th
International Haifa Verification Conference, HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Se-
lected Papers, Lecture Notes in Computer Science 6504, Springer, pp. 161–181. Available at http:
//dx.doi.org/10.1007/978-3-642-19583-9_16.

[9] Robert Könighofer, Georg Hofferek & Roderick Bloem (2013): Debugging formal specifica-
tions: a practical approach using model-based diagnosis and counterstrategies. STTT 15(5-
6), pp. 563–583, doi:10.1007/s10009-011-0221-y. Available at http://dx.doi.org/10.1007/
s10009-011-0221-y.

[10] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2007): Where’s Waldo? Sensor-Based Tem-
poral Logic Motion Planning. In: 2007 IEEE International Conference on Robotics and Automation, ICRA
2007, 10-14 April 2007, Roma, Italy, IEEE, pp. 3116–3121, doi:10.1109/ROBOT.2007.363946. Available at
http://dx.doi.org/10.1109/ROBOT.2007.363946.

[11] Hadas Kress-Gazit, Georgios E. Fainekos & George J. Pappas (2009): Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Trans. Robotics 25(6), pp. 1370–1381. Available at http://dx.doi.
org/10.1109/TRO.2009.2030225.

[12] Shahar Maoz & Jan Oliver Ringert (2015): GR(1) Synthesis for LTL Specification Patterns. In: ESEC/FSE,
ACM. http://smlab.cs.tau.ac.il/syntech/patterns/.

[13] Shahar Maoz & Yaniv Sa’ar (2011): AspectLTL: an aspect language for LTL specifications. In Paulo Borba
& Shigeru Chiba, editors: AOSD, ACM, pp. 19–30. Available at http://doi.acm.org/10.1145/
1960275.1960280.

[14] Shahar Maoz & Yaniv Sa’ar (2012): Assume-Guarantee Scenarios: Semantics and Synthesis. In:
MODELS, LNCS 7590, Springer, pp. 335–351. Available at http://dx.doi.org/10.1007/
978-3-642-33666-9_22.

[15] Shahar Maoz & Yaniv Sa’ar (2013): Counter play-out: executing unrealizable scenario-based specifica-
tions. In: ICSE, IEEE / ACM, pp. 242–251. Available at http://dl.acm.org/citation.cfm?id=
2486821.

SYNT 2015 Informal PRE-proceedings, Page 18

S. Maoz & J.O. Ringert 15

[16] Shahar Maoz & Yaniv Sa’ar (2013): Two-Way Traceability and Conflict Debugging for AspectLTL Pro-
grams. T. Aspect-Oriented Software Development 10, pp. 39–72. Available at http://dx.doi.org/
10.1007/978-3-642-36964-3_2.

[17] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) Designs. In: VMCAI, LNCS
3855, Springer, pp. 364–380. Available at http://dx.doi.org/10.1007/11609773_24.

[18] Amir Pnueli & Roni Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, ACM Press, pp.
179–190.

[19] Amir Pnueli, Yaniv Sa’ar & Lenore D. Zuck (2010): JTLV: A Framework for Developing Verification Algo-
rithms. In: CAV, LNCS 6174, Springer, pp. 171–174. Available at http://dx.doi.org/10.1007/
978-3-642-14295-6_18.

[20] Vasumathi Raman, Nir Piterman & Hadas Kress-Gazit (2013): Provably correct continuous control
for high-level robot behaviors with actions of arbitrary execution durations. In: 2013 IEEE Interna-
tional Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, IEEE, pp. 4075–
4081, doi:10.1109/ICRA.2013.6631152. Available at http://dx.doi.org/10.1109/ICRA.2013.
6631152.

[21] Jan Oliver Ringert, Bernhard Rumpe & Andreas Wortmann (2014): Architecture and Behavior Modeling of
Cyber-Physical Systems with MontiArcAutomaton. Aachener Informatik-Berichte, Software Engineering 20,
Shaker Verlag.

[22] SYNTECH forklift website. http://smlab.cs.tau.ac.il/syntech/forklift/.

SYNT 2015 Informal PRE-proceedings, Page 19

Preliminary Report. Final version to appear in:
SYNT 2015 © Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann

A multi-paradigm language for reactive synthesis

Ioannis Filippidis Richard M. Murray
{ifilippi@, murray@cds.}caltech.edu

Control and Dynamical Systems,
California Institute of Technology,

Pasadena CA 91106, USA

Gerard J. Holzmann
gerard.j.holzmann@jpl.nasa.gov
Laboratory for Reliable Software,

Jet Propulsion Lab, Caltech,
Pasadena CA 91109, USA

This paper proposes a language for describing reactive synthesis problems that integrates
imperative and declarative elements. The semantics is defined in terms of two-player turn-
based infinite games with full information. Currently, synthesis tools accept linear temporal
logic (LTL) as input, but this description is less structured and does not facilitate the expres-
sion of sequential constraints. This motivates the use of a structured programming language
to specify synthesis problems. Transition systems and guarded commands serve as imper-
ative constructs, expressed in a syntax based on that of the modeling language Promela.
The syntax allows defining which player controls data and control flow, and separating a
program into assumptions and guarantees. These notions are necessary for input to game
solvers. The integration of imperative and declarative paradigms allows using the paradigm
that is most appropriate for expressing each requirement. The declarative part is expressed
in the LTL fragment of generalized reactivity(1), which admits efficient synthesis algorithms,
extended with past LTL. The implementation translates Promela to input for the Slugs
synthesizer and is written in Python. The AMBA AHB bus case study is revisited and syn-
thesized efficiently, identifying the need to reorder binary decision diagrams during strategy
construction, in order to prevent the exponential blowup observed in previous work.

1 Introduction
Over the past three decades, system formal verification has aided design and become practical for
industrial application. In the past decade, synthesis of systems from specifications has seen sig-
nificant development [60, 100], partially owing to the discovery of temporal logic fragments that
admit efficient synthesis algorithms [83, 20, 30, 8]. Applications range from protocol synthesis
for hardware circuits [20], to correct-by-construction controllers for hybrid systems [57, 56, 101].

Many languages and tools have been developed for modeling and model checking systems.
Unlike verification using model checking, the tools for synthesis have been developed much more
recently. One reason is that centralized synthesis from linear temporal logic (LTL) [85] has
doubly exponential complexity in the length of the specification formula [89], a result that did
not encourage further development initially.

Currently, LTL is the language used for describing specifications as input to synthesis tools.
There are many benefits in using a logic for synthesis tasks, its declarative nature being a major
one, because it allows expressing individual requirements separately, and in a precise way. It
also makes explicit the implicit conventions present in programming languages [61]. Another
aspect of synthesis problems that makes declarative descriptions appropriate is that we want
to describe as large a set of possible designs as possible, in order to avoid overconstraining the
search space.

However, not all specifications are best described declaratively. There exist synthesis prob-
lems whose description involves graph-like structures that are cumbersome for humans to write

SYNT 2015 Informal PRE-proceedings, Page 20

2 A multi-paradigm language for reactive synthesis

in logic. Robotics problems typically involve graph constraints that originate from possible phys-
ical configurations. For example, considering a wheeled robot, its physical motion is modeled
by possible transitions that avoid collisions with other objects, whereas an objective to pa-
trol between two locations can more appropriately be described with a temporal logic formula.
Properties that specify sequential behavior also lead to graph-like structures, and require use of
auxiliary variables that serve as memory. Expressing sequential composition in logic leads to
long, unstructured formulas that deemphasize the specifier’s intent. The resulting specifications
are difficult to maintain, and writing them is error-prone. In addition, the specifier may need
to explicitly write clauses that constrain variables to remain unchanged, in order to maintain
imperative state. This leads to longer formulas in which the intent behind individual clauses is
less readable.

Another motivation relates to the temporal logic hierarchy [71, 92]. Synthesis from LTL
has time complexity polynomial in the state space size, and doubly exponential in the size of
the formula. In contrast, algorithms with linear time complexity in the size of the formula are
known for the fragment of generalized reactivity of rank one, known as GR(1).

In the automata hierarchy, the GR(1) fragment corresponds to an implication of determin-
istic Büchi automata (BAs) [83, 92, 78, 93]. The consequent requires some system behavior,
provided that the environment satisfies the antecedent of the implication, as described in Sec-
tion 2.3. Deterministic automata can describe recurrence properties (), but not persistence
(). Intuitively, the behavior of variables uniquely determines the associated behavior of a
deterministic BA. This drops the complexity of synthesis, because the algorithm does not have
to keep track of branching in the automata that is not recorded in the problem’s variable.

A large subset of properties that are of practical interest in industrial applications [28, 69, 20]
can be expressed in GR(1). There do exist properties that cannot be represented by deterministic
Büchi automata, e.g., persistencep. Of these properties, those with Rabin rank equal to one
are still amenable to polynomial time algorithms (by solving parity games) [30]. Higher Rabin
ranks are not expected to admit polynomial time solution, unless P = NP [30]. This motivates
formulating the required properties in GR(1), which corresponds to Streett properties with rank
one. A game with Streett objective of rank one can be solved with the same time complexity as
a Rabin objective of rank one. Therefore, properties in the lower Rabin ranks are known to be
at least as hard to synthesize, as GR(1). This motivates formulating the required properties in
GR(1), which trades off expressive power for computational efficiency.

Translating properties to deterministic automata can be done automatically, but may lead
to more expensive synthesis problems than manually written properties, as reported in [78].
So the ability to write deterministic automata directly in a structured and readable language
avoids the need for automated translation, and allows fine tuning them, based on the specifier’s
understanding of the problem. The trade-off is that the translation has to be performed by a
human.

Another reason why specifications are not always purely declarative is that in many cases
we want to synthesize a system using existing components. In other words, we already have
a partial model, which describes the possible behavior of components that already exist, e.g.,
because we purchased them off the self, to interface them with the part of the system that we are
synthesizing. We declare to our synthesis tool what properties the controller under design should
satisfy with respect to this model. This restricts what the system should achieve using these
components, but not how exactly that will be achieved. So the partial model is best described
imperatively, whereas the goal declaratively, using temporal logic.

SYNT 2015 Informal PRE-proceedings, Page 21

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 3

Educationally, the transition for students from a general purpose programming language like
Python or C, directly to temporal logic constitutes a significant leap. Using a multiparadigm
language can make this transition smoother.

This work proposes a language that can describe synthesis problems for open systems that
react to an adversarial environment. The syntax is derived from that of Promela, whereas the
semantics interprets it as a two-player turn-based game of infinite duration. Both synchronous
and asynchronously scheduled centralized systems with full information can be synthesized. In
Section 2, we review temporal logic and relevant notions about two-player games. The presence
of two players requires declaring who controls each variable (Section 3.1), as well as the data
flow, and control flow in transition systems (Section 3.2). In addition, the specification needs
to be partitioned into assumptions about the environment, and guarantees that the system
must satisfy (Section 2, Section 3.2). The integration of declarative and imperative semantics
is obtained by defining imperative variables (Section 3.1), deconstraining, and executability of
actions (Section 3.3). In order to be synthesized, the program is translated to temporal logic,
as described in Section 4. In Section 6, we discuss the implementation and the significant
improvements in the AMBA case study [20] that were possible by merging fairness requirements
into a single Büchi automaton. Relevant work is collected in Section 7, and conclusions in
Section 8.

2 Preliminaries

2.1 Linear Temporal Logic

Linear temporal logic with past is an extension of Boolean logic used to reason about temporal
modalities over sequences. The temporal operators “next” , “previous” , “until” U , and
“since” S suffice to define the other operators [85, 10]. Let AP be a set of variable symbols
p that can take values over B ≜ {⊥,⊤}. A model of an LTL formula is a sequence of variable
valuations called a word w : N → BAP. A well-formed formula is inductively defined by φ ::=
p|¬φ|p ∧ p|φ|φ U φ |φ|φS φ. A formula φ is evaluated over a word w at a time i ≥ 0, and
w, i |= φ denotes that φ holds at position i of word w. Formula φ holds at position i if φ
holds at position i + 1, φ U ψ holds at i if there exists a time j ≥ i such that w, j |= ψ and for
all i ≤ k < j, it is w,k |= φ. The operator p ≜ true U p requires that p be “eventually” true,
and the operator p ≜ ¬¬p requires that p be true over the whole word. The past fragment
of LTL extends it with the “previous” and “since” operators, ,S respectively [66, 70, 54].
Formula φ holds at i iff i > 0 and w, i −1 |= φ, and formula φS ψ holds at i iff there exists a
time j with 0 ≤ j ≤ i such that w, j |= ψ, and for all k such that j < k ≤ i it is w,k |= φ. The weak
previous operator is defined as φ ≜ ¬¬φ, “once” as φ ≜ ⊤S φ, and “historically”
as φ ≜ ¬¬φ .

2.2 Turn-based games

In many applications, we are interested in designing a system that does not have full control
over the behavior of all variables that are used to model the situation. Some problem variables
represent the behavior of other entities, usually collectively referred to as the “environment”.
The system reads these input variables and reacts by writing to output variables that it controls,

SYNT 2015 Informal PRE-proceedings, Page 22

4 A multi-paradigm language for reactive synthesis

continuing indefinitely. Such a system is called open [6, 84], to distinguish it from closed systems
that have no inputs, and so full control.

The synthesis of an open system can be formulated as a two-player adversarial game of
infinite duration. The two players in the game are usually called the protagonist (system) and
antagonist (environment). We control the protagonist, but not the antagonist. If the players
move in turns, then the game is called alternating. Each pair of consecutive moves by the two
players is called a turn of the game. In each turn, player 0 moves first, without knowing how
player 1 will choose to move in that turn of the game. Then player 1 moves, knowing how player
0 moved in that turn. Depending on which player we control, there are two types of game. If
the protagonist is player 1, then the game is called Mealy, otherwise Moore [75, 76]. Due to the
difference in knowledge about the opponent’s next move between the two flavors of game, more
specifications are realizable in a Mealy game, than in a Moore game. There exist solvers for
both Moore and Mealy games. Here we will consider Mealy games only.

2.3 Games in logic
Temporal logic can be used to describe both the possible moves in a game (the arena or game
graph), as well as the winning condition. Let X and Y be two sets of propositional variables,
controlled by the environment and system, respectively. Let X ′ and Y ′ denote primed variables,
where x′ represents the next valuex of variable x. We abuse notation by using primed variables
inside temporal formulae.

Synthesis from LTL specifications is in 2ExpTime [87, 89], motivating the search for frag-
ments that admit more efficient synthesis algorithms. Generalized reactivity of index one, ab-
breviated as GR(1), is a fragment of LTL that admits synthesis algorithms of time complexity
polynomial in the size of the state space [20]. GR(1) [50, 88, 16, 67, 32] is used in the following,
but the results can be adapted to larger fragments of LTL, provided that another synthesizer
be used [49, 31, 29, 21, 33].

The possible moves in a Mealy game can be specified by initial and transition conditions
that constrain the environment and system. Initial conditions are described by propositional
formulae over X ∪Y . Transition conditions are described by safety formulae of the form φi

where, for the environment i = e and φ is a formula over X ∪ X ′ ∪ Y , and for the system
i = s and φ is a formula over X ∪ X ′ ∪ Y ∪ Y ′. Note that the system plays second in each
turn, so it can see X ′, whereas the environment cannot see Y ′, because it represents future
values. The winning condition in a GR(1) game is described using progress formulae of the form
ψi, i ∈ {e,s}, where φi is a propositional formulae over X ∪Y .

The overall specification of a GR(1) game is of the form

(n0∧

i=0

θe,i ∧
n1∧

i=0

φe,i ∧
n2∧

i=0

ψe,i

︸ ︷︷ ︸
assumption

)
→

(m0∧

i=0

θs,i ∧
m1∧

i=0

φs,i ∧
m2∧

i=0

ψs,i

︸ ︷︷ ︸
assertion

)

(1)

Note that requirements that constraint the environment are called assumptions and guarantees
that the system must satisfy are called assertions. Assumptions limit the set of admissible envi-
ronments, because, in practice, it is impossible to satisfy the design requirements in arbitrarily
adversarial environments [6]. The implication above is interpreted by prioritizing between safety
and liveness, to prevent the system from violating its safety assertion in case this would allow it

SYNT 2015 Informal PRE-proceedings, Page 23

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 5

to prevent the environment from satisfying its liveness assumption. The synthesis algorithm for
GR(1) has time complexity O

(
nm |Σ|2

)
[20], where n is the length of the assumption formula, m

the length of the assertion formula, and Σ is the set of all possible variable valuations.

3 Language definition
The language we are about to define is syntactically an extension of Promela [47], but its se-
mantics is defined by a translation to turn-based infinite games with full information. Promela
is a guarded command language that can represent transition systems, non-deterministic exe-
cution, and guard conditions for determining whether statements are executable [47, 27]. Its
syntax can be found in the language reference manual [47, 46]. Here we will introduce syntactic
elements only as needed for the presentation. Briefly, we mention that a program comprises
of transition systems and automata, whose control flow can be described with sequential com-
position, selection and iteration statements, goto, as well as blocks that group statements for
atomic execution.

3.1 Variables
Ownership In a game, variables from X are controlled by the environment and variables
from Y by the system. We call owner of a variable the player that controls it. We use the
keywords env and sys to signify the owner of a variable. Variables can be of Boolean, bit, byte,
(bounded) integer, or bitfield type.

Declarative and imperative semantics In imperative languages, variables remain un-
changed, unless explicitly assigned new values. In declarative languages, variables are free to
change, unless explicitly constrained [97]. In verification, both declarative languages like TLA
[62] and SMV [24] have been used, as well as imperative languages like Promela and Dve [12].

In a synthesis problem, there are variables that are more succinct to describe declaratively,
whereas others imperatively. For this reason, we combine the two paradigms, by introducing
a new keyword free to distinguish between imperative and declarative variables. Variables
whose declaration includes the keyword free are by default allowed to be assigned any value
in their domain, unless explicitly constrained otherwise. Variables without the keyword free
have imperative semantics, so their value remains unchanged, unless otherwise explicitly stated.
Let V f ree denote free variables, and V imp imperative variables, and Vp the variables of player
p ∈ {e,s}.

Ranged integer data type Symbolic methods for synthesis use reduced ordered binary
decision diagrams (BDDs) [23, 10], which represent sets of states, and relations over states. As
operations are performed between BDDs, these can grow quickly, consuming more memory. The
growth can be ameliorated by reordering the variables over which a BDD is defined. Reordering
variables can be prohibitively expensive, as discussed in Section 6, so reducing the number
of bits is a primary objective. In addition, the complexity of GR(1) synthesis is polynomial
in the number |Σ| of variable valuations, which grows exponentially with each additional bit.
We can reduce the number of bits by using bitfields whose width is tailored to the problem
at hand. For convenience, the ranged integer type int(MIN, MAX) is introduced to define a

SYNT 2015 Informal PRE-proceedings, Page 24

6 A multi-paradigm language for reactive synthesis

∀

∀ ∀ ∀

∀ ∀ ∀

pcr

envX

env

(a) assume env

∃

∀

∃ ∃ ∃

sys

env

pcr

X

(b) assume sys

∀

∃ ∃ ∃

∀

env

sys

pcr

Y

(c) assert env

∃

∃

∃

sys
pcr

sys
Y

control
flow

data
flow

(d) assert sys

Figure 1: An assumption (assertion) process constrains the environment (system) variables, and
env (sys) declares who chooses the next statement to be executed (when there are multiple).

variable x ∈ {MIN,MIN+1, . . . ,MAX}, with saturating semantics [42]. An integer with saturating
semantics cannot be incremented when its value reached the maximal in its range, i.e., MAX.

A ranged integer is represented by a bitfield. The bitfield comprises of bits, so it can only
range between powers of two. The ranged integer though may have an arbitrary range. For
this reason, safety constraints are automatically imposed on the bitfield representing the ranged
integer. In other words, if x is the integer value of the bitfield, and it represents an integer that
can take values from MIN to MAX, then the constraint (MIN ≤ x ≤ MAX) is added to the
safety formula of the player that owns the ranged integer.

Other numerical data types have mod wrap semantics. The value of an integer with mod
wrap semantics overflows to MIN (underflows to MAX) if incremented when equal to the maximal
value MAX (minimal value MIN). Mod wrap semantics are available only for integers that range
over all values of a (signed) bitfield, because the modulo operation would otherwise be needed.
Any BDD describing a modulo operation is at best of exponential size [23].

3.2 Programs representing games

In many synthesis problems, the specification includes graph-like constraints. These may orig-
inate from physical configurations in robotics problems, deterministic automata to express a
formula in GR(1), or describe abstractions of existing components that are to be controlled.
These constraints can be described by processes. A process describes both control and data
flow. In order to discuss control and data flow, we will refer to program graphs. A program
graph is an intermediate representation of a process after parsing and control flow analysis. For
our purposes, a program graph is a rooted directed multi-graph Pr ≜ (Vr,Er) whose edges Er are
labeled with program statements, and nodes Vr abstract states of the system [53, 10]. Execution
starts from the graph’s root. A multi-digraph is needed, because, between two given nodes,
there may exist edges labeled with different program statements.

Control flow is the traversal of edges in a program graph (i.e., execution of statements),
whereas data flow is the behavior of program variables along this traversal. A program counter
pcr is a variable used to store the current node in Vr. A natural question to ask is who controls the
program counter. Another question is whose data flow is constrained by the program graph Pr.
In the next section, we define syntax that allows declaring the player that controls the program
counter, and the player that is constrained to manipulate the variables it owns, according to

SYNT 2015 Informal PRE-proceedings, Page 25

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 7

the statements selected by the program counter. This allows defining both processes where
control and data flow are controlled and constrain the same player, but also processes with
mixed control. If one player controls the program counter, and the opponent reacts by choosing
a compliant data flow, then the process itself describes a game.

0

1
(xt,	yt)

(x,	y)

2

0 1 2 3

Th
e	
ca
rt
oo

n	
ch
ar
ac
te
rs
	a
re
	©

	b
y	
Th
e	
W
al
t	D

is
ne

y	
Co

m
pa
ny
.

3

(a) Adversarial game.
1 #define H 3
2
3 free env int(1, 2) xt;
4 env int(0, H) yt;
5
6 assume env proctype taz(){
7 do
8 :: yt = yt − 1
9 :: yt = yt + 1

10 :: skip
11 od
12 }
13
14 assume ltl { []<>(yt == 0) }
15
16 sys int(0, 3) x;
17 sys int(0, H) y;
18
19 assert sys proctype bunny(){
20 do
21 :: x = x − 1
22 :: x = x + 1
23 :: y = y − 1
24 :: y = y + 1
25 :: skip
26 od
27 }
28
29 assert ltl {
30 [] ! ((x == xt) && (y == yt)

) &&
31 /* [] ! −−X ((xt' == x) &&

(yt' == y)) && */
32 [] −X ! ((xt' == x) && (yt'

== y)) &&
33 []<>((x == 3) && (y == 2)) }

(b) Specification for the game.

Figure 2: Simple example.

As an example, suppose that the environment controls
the program counter, and the system the data flow. At each
node of the program graph, the environment can pick any
successor node, and the system must react by selecting a
data flow compatible with the program statement that la-
bels the edge that the environment picked. So paths in this
program graph are universally quantified, whereas data flow
is existentially quantified. The notion of path quantification
corresponds to universal and existential nodes in alternat-
ing tree automata [25, 79, 98, 99, 59], although the program
graphs presented here differ in how edges are labeled. If
paths are universally quantified, then control flow nonde-
terminism is known as demonic, p.85 [45], [95], otherwise
as angelic [73, 37, 22] If we unrolled the game described
by a process, then we would get a game graph, with nodes
that correspond to valuations of the variables and the pro-
gram counter. When the control flow player takes a turn,
it picks the next statement to be executed, i.e., an edge in
the program graph of a process. This edges corresponds to
an edge in the game graph. If the control flow player is the
system, then the choice of edge in the game graph is ex-
istentially quantified, otherwise it is universally quantified.
In this way, the path that is constructed through the game
graph has alternating quantification. The dataflow player
must respond, by choosing the values of variables accord-
ingly. This choice corresponds to selecting an edge from the
next node in the game graph, as shown in Fig. 1.

3.2.1 Syntax

Program graphs are declared with the proctype keyword
of Promela followed by statements enclosed in braces. The
keyword assume (assert) declares a process that constrains
the environment’s (system’s) data flow. These keywords
are common in theorem proving and program verification
languages [64]. The keyword env (sys) declares that the
environment (system) controls the program counter pcr of a
process, Fig. 1. The implementation of assume sys is the
most interesting, and is described in Section 4. We will call program graphs processes, noting
that these processes have full information about each other, so they correspond to centralized
synthesis, not distributed. The program counter owner is the player that controls variable pcr.
The process player is the player constrained by the program graph.

SYNT 2015 Informal PRE-proceedings, Page 26

8 A multi-paradigm language for reactive synthesis

Example For example, the specification in Fig. 2b defines a game between two players: the
Bunny, and Taz, that move in turns, as depicted in Fig. 2a. Each logic time step includes a
move by Taz from (xt ,yt) to (x′

t ,y
′
t), followed by a move by the Bunny from (x,y) to (x′,y′). The

Bunny must reach the carrot, without moving through a cell that Taz is in (assert ltl). Taz
can only move between xt ∈ {1,2}, and has to keep visiting the lower row (assume ltl). Taz
can move diagonally, but the Bunny only vertically or horizontally. Both players have an option
to stay still (skip). Note that xt is a declarative variable, so it can change unless constrained.

The process taz constrains the environment variables xt ,yt (assume) and the environment
controls its program counter (env). The do loops define alternatives that each player must
choose from to continue playing the game. Note that nondeterminism in process taz is demonic
(universally quantified), whereas in bunny angelic (existentially quantified), i.e., the design free-
dom given to the synthesis tool. Each player has full information about all variables in the
game, both local, as well as global, and auxiliary. The solution is a strategy represented as a
Mealy transducer [75] that the Bunny can use to win the game.

It is interesting to consider the conjuct φ ≜ ¬((x = x′
t) ∧ (y = y′

t)), which prevents the
Bunny from moving next to Taz, from where Taz can catch it in the next turn. Note that -X
and --X are the weak and strong previous operators, and requires that, at each time step,
the formula with as main operator be true. Using the strong previous, this is equivalent to
¬((x = x′

t)∧ (y = y′
t)) (commented in code).

A naive first attempt could be ¬((x = x′
t)∧(y = y′

t)). However, during solution of the Mealy
game, this leads to a controllable predecessor operation [20, 96] of the form ∀x′

t ,y
′
t , . . .∃x′,y′,(x =

x′
t)∧ (y = y′

t). This is false, because variables x,y are not quantified (fixed already in the previous
time step). Instead, we apply the axiom p =p, P4, p.58 [70]. This shifts the expression
¬((x = x′

t)∧ (y = y′
t)) to the past, and yields the equivalent formula φ, which is suitable for con-

trollable predecessor computations. Past LTL is implemented by a translation using temporal
testers [54].

3.3 Statements
Control flow can be defined using selection (if) and repetition (do) statements, else, break,
goto, and labeled statements. The statements run, call, return are not supported, because
dynamic process creation would dynamically add BDD variables. In this section, we define
expressions, assignments, and their executability.

Expressions Primed variables (that correspond to using the “next” operator) can appear
in expressions to refer to the “next” values of those variables, as in the syntax of synthesis tools
and TLA [61]. Following TLA, we will call (state) predicate an expression that contains no
primed variables and action an expression that contains primed variables [61]. Actions can be
regarded as generalized assignments, in a sense that will be made precise later. Primed system
variables cannot appear in assumption processes, because they refer to values not yet known
to the environment. Using a GR(1) synthesizer as back-end, multiple priming within a single
statement is not allowed, but can be allowed if a full LTL synthesizer is used as back-end [49, 36].

Deconstraining By default, imperative variables are constrained to remain invariant. If any
assumption (assertion) process executes a statement that contains a primed environment (sys-
tem) variable, then that variable is not constrained to remain unchanged in that time step. For

SYNT 2015 Informal PRE-proceedings, Page 27

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 9

example, in the assertion sys bit x = 0; (x == 0); (x' == 1 - y) the variable x is constrained
by x′ = x when x == 0 is executed, but the synthesizer is allowed to pick its next value as needed,
in order to satisfy x' == 1 - y. Note that statements in assumption (assertion) processes that
contain primed imperative system (environment) variables do not deconstrain those variables,
because assumptions (assertions) are relevant only to the environment’s (system’s) data flow.

Assignments In Promela, expressions are evaluated by first converting all values to inte-
gers, then evaluating the expression with precision that depends on the operating system and
processor, and updating the assigned variable’s value, truncating if needed. Let trunc(y,w) de-
note a function that truncates the value of expression y to bitwidth w. An assignment x = expr
is translated to the logic formula x′ = trunc(expr,width(x)), if variable x has mod wrap semantics,
and to x′ = expr otherwise. If variable x is imperative, then it is deconstrained.

Statement executability A condition called guard is associated to each statement [27]. The
process can execute a statement only if the guard evaluates to true. If a process currently has
no executable statement, then it blocks. For each statement, its guard is defined by existential
quantification of the primed variables of the data flow player. The quantification is applied after
the statement is translated to a logic formula. So the guard of a statement is the realizability
condition for that statement. It means that, from the local viewpoint of that statement only,
given the current values of variables in the game, the constrained player can choose a next move.
So the scheduler cannot pick as next process to execute a process that has blocked. Clearly, if
all processes block, then that player deadlocks.

Using this definition, the guard of a state predicate is itself, as in Promela. The implemen-
tation quantifies variables using the Python binary decision diagram dd [4]. If an unsatisfiable
guard is found, then the implementation raises a warning. For example, if we inserted the
statement xt && xt' && y' in the process bunny (see example), then its guard would be
∃y′.xt ∧ x′

t ∧ y′ = xt ∧ x′
t . Similarly, the guard of an expression xt && xt' in the process taz is

xt .

4 Translation to logic
In this section, we describe how a program is translated to temporal logic, in particular GR(1).
For each process, the starting point is its program graph, which has edges labeled by program
statements, and describes the control flow of a process in the source code. The construction of
program graphs from source code is the same as for Promela [47], and described in detail in
[35].

Here we give a brief example. Consider the process maintain_lock in Listing 1. It has
two do loops, with two outgoing edges each. The corresponding program graph is shown in
Fig. 3b. Each statement labels one edge, and that edge can be traversed if the guard associated
to the statement evaluates to true. The guard can contain primed variables, requiring that the
dataflow player manipulates them so as to make the edge’s guard true. Otherwise, the player
cannot traverse an edge with false guard. This program graph is translated further to logic, as
described next. The semantics of the language are defined by this translation to logic.

There are three groups of elements in a program: processes, ltl blocks, and the scheduler
that picks processes for execution. The scheduler is not present in the source code, but is

SYNT 2015 Informal PRE-proceedings, Page 28

10 A multi-paradigm language for reactive synthesis

added during translation, to represent the products between processes. The translation can be
organized into a few thematically related sets of formulae. Due to lack of space, we are going to
discuss the most interesting and representative of these at a high level. The full translation can
be found in [35], and in the implementation. There are four groups of formulae: (i) control and
data flow, (ii) invariance of variables, (iii) process scheduler, (iv) exclusive execution (atomic).

Control and data flow The translation of processes is reminiscent of symbolic model checking
[74], but differs in that there are two players, and both play in each logic time step. This requires
carefully separating the formulae into assumptions and guarantees (assertions).

Suppose that the scheduler selects process r to execute (how is explained later). At a given
time step, a process is at some node i in its program graph, and will transition to a next node
j, by traversing an edge labeled by a program statement. The player that controls the program
counter pcr selects the next statement, so the edge in the program graph. The player that is
constrained by that process has to make sure that it complies, by picking values for variables
that it controls such that the statement is satisfied. Recall that the scheduler can only pick from
processes that have a satisfiable statement, so whenever a process executes, there will exist a
satisfiable next statement. Of course, conflicts can arise between different synchronous processes
that can lead to deadlock, and it is the synthesizer’s task to avoid such situations, to avoid losing
the game. The transition constraints are encoded by the formula

trans(p,r) ≜
∧

i∈Nr

(
(pcr = i) →

∨

(i, j,k)∈Er

φr,i, j,k ∧ (p̃cr = j)∧ (˜keyr = k)∧ exclusive(p,r, i, j,k)
)

(2)

where Nr denotes the set of nodes, and Er the multi-edges of the program graph of a process,
p denotes the player (e,s). The logic formula equivalent to bitblasting the statement labeling
edge (r, i, j,k) is φr,i, j,k. For assume sys processes, the system selects the next edge one time
step before the scheduler decides whether that environment process will execute, so two copies
are needed, pcr, p̂cr (system variables). So in an assume sys process, p̃cr ≜ p̂cr, ˜keyr ≜ key(r),
and in other processes p̃cr ≜ pc′

r, ˜keyr ≜ key(r)′. The variable key(r) selects among multi-edges,
and is controlled by the same player as the program counter pcr of the process with pid r. In
a system process, if node j is in an atomic block, then exclusive(p,r, i, j,k) sets the auxiliary
variables ex′

s and pm′
s to request atomic execution from the scheduler. The integer variable exs

stores the identity of the process that requests atomic execution, and the bit pms requests that
the environment be preempted, if the scheduler grants the request for atomic execution.

dataflow(r) ≜ (ps(r)′ = m(r)) → trans(p,r)

selectable(r) ≜ blocked(r) → (ps(r)′ ̸= m(r))

control_flow(r) ≜ ite
(
(ps(r)′ = m(r)), pc_trans(p,r), inv(pcr)

)

blocked(r) ≜
∨

i∈Nr

(
(pcr = i)∧

∧

(i, j,k)∈Er

¬guardr,i, j,k
)

(3)

The environment variables ps(r) select the process or synchronous product that will execute next
inside an asynchronous product (top context is an asynchronous product). For this purpose,
each process and product have a local integer id m(·) among the elements inside the product
that contains them. The transition relation for the program counter depends on the type of
process. For assume sys processes, pc_trans(p,r) ≜ (pc′

r = p̂cr), and for other processes it equals

SYNT 2015 Informal PRE-proceedings, Page 29

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 11

guards(r). The condition guards(r) constrains the program counter to follow unblocked edges in
a process. It is necessary when the control and data flow are controlled by different players,
because whoever moves the program counter, can otherwise pick an edge with a statement that
blocks the other player. In addition, for assume sys processes, a separate constraint with same
form as guards(r), but different priming of sub-expressions is imposed on the program counter
copy p̂cr. The ternary conditional is denoted by ite(a,b,c).

Invariance of variables When a process is not executing, its declarative local variables must
be constrained to remain invariant (x′ = x). Also, imperative variables must remain invariant
whenever no process executes a statement (edge) that either is an expression and contains a
primed copy of that variable, or is an assignment. These are ensured by the following equations

local_free(p,r) ≜ (ps(r)′ ̸= m(r)) →
∧

x∈V free
p,r

inv(x)

imperative_inv(p,r) ≜ array_inv(p,r)∧
∧

x∈V imp
p,r

(inv(x)∨
∨

(i, j,k)∈Er.x∈deconstrained(r,i, j,k)

edge(r, i, j,k))

(4)
where V free

p,r are free local variables of player p in process r. For assume sys processes, it is
edge(r, i, j,k) ≜ (ps(r)′ = m(r))∧(pcr = i)∧(p̂cr = j)∧(key(r) = k), and for other types of processes
edge(r, i, j,k) ≜ (ps(r)′ = m(r))∧ (pcr = i)∧ (pc′

r = j)∧ (key(r)′ = k). Primed references to elements
in imperative arrays deconstrain only the referenced array element, ensured by array_inv.

Scheduler The scheduler (environment) has to select the processes that will execute. Products
of processes can be defined in the source code by enclosing processes, or other products, in braces
preceded by the keywords async and sync. They can be nested. async defines an asynchronous
product, and the scheduler picks some unblocked process or product inside it to execute next.
If all processes/products in an asynchronous product k have blocked, then the scheduler sets
the corresponding variable psk to a reserved value (nk). The reserved value is also used if
the asynchronous product is nested in a synchronous product that currently is not selected to
execute.

If the top product blocks, then the player has deadlocked, losing the game. The only ex-
ception is when the environment is preempted by a request from a system process for atomic
execution. At a high level, this behavior is expressed as follows for scheduling the environment
processes.

product_selected(k) ≜ (ps(k)′ ̸= m(k)) ↔ (ps′
k = nk)

selectable_element(r) ≜ element_blocked(r) → (ps(r)′ ̸= m(r))

element_blocked(r) ≜

blocked(r), if r is a process
sync_blocked(r), if r is a synchronous product
async_blocked(r), if r is an asynchronous product.

(5)

sync_blocked(k) ≜
∨

r∈Rk

element_blocked(r)

async_blocked(k) ≜
∧

r∈Rk

element_blocked(r)
(6)

SYNT 2015 Informal PRE-proceedings, Page 30

12 A multi-paradigm language for reactive synthesis

pause_env_if_req ≜ (ps′
env_top = ne) ↔ (pms ∧ (ps′

sys_top = exs < ns)). (7)

The expression element_blocked(r) depends on the blocked(z) expressions, and ensures that
the scheduler doesn’t select a synchronous product containing some blocked process, neither
an asynchronous product where all processes are blocked. Recall also selectable from earlier,
which applies to individual processes. Analogous formulae apply to system processes. For
system processes, the top-level asynchronous product implication in async_blocked(r) must be
replaced with equivalence, to force the environment to choose some system process (or product)
to execute, when there exist unblocked ones. Note that the asynchronous products here are in
the context of full information, so the system is not asynchronous in the sense of [55, 86].

Exclusive execution A system process of the top asynchronous product can request to exe-
cute atomically by setting the variables pms,exs, Eq. (2). If that process remains unblocked in
the next time step, then the scheduler will grant it uninterrupted execution, until it exits atomic
context (either blocked, or reached statements outside the atomic{...} block).

grants ≜
∧

r∈pids(s)

(
((exs = m(r))∧ frozen_unblocked(r)) → (ps(r)′ = m(r))

)
(8)

Recall also that the environment is allowed to pause only if preempted by the system, otherwise
it loses the game (pause_env_if_req). The formula frozen_unblocked(r) checks whether the
system would block, in case the environment froze, granting it exclusive execution. In case the
system will block, then the request is not granted, and atomicity lost. This requires substituting
primed environment variables with unprimed ones, as follows

frozen_unblocked(r) ≜

∨
i∈Nr

(
(pcr = i)∧ ∨

(i, j,k)∈Er

guard_test(r, i, j,k)
)
, if player(r) = s

¬blocked(r), otherwise

guard_test(r, i, j,k) ≜
{

guard(r, i, j,k)| x/x′ for x ∈ X , if i in atomic context
guard(r, i, j,k), otherwise.

(9)

The reason is that this formula corresponds to the case that the environment sets x′ = x for the
program variables it owns. If atomicity is lost in this turn, then the environment does not need
to set x′ = x, and this is ensured by the definition of guard_test(r, i, j,k).

As in Promela, LTL formulae that express safety are deactivated during atomic execution
(in implementation, an option allows making atomic execution visible to LTL properties). They
are re-activated as soon as atomicity is lost.

mask_env_ltl ≜ ite(pms ∧ (ps′
sys_top = exs < ns), freeze_env_free, ψenv safety ltl) (10)

For the system, mask_sys_ltl is defined similarly. The formula freeze_env_free constrains
declarative environment variables in global context and inside system processes to remain un-
changed while the system is granted exclusive execution.

If an atomic block appears in a process, then the ltl properties in the program must not
contain primed variables, to ensure that the above translation yields the intended interpretation
(stutter invariance). If unbounded loops appear inside an atomic context, then there can be

SYNT 2015 Informal PRE-proceedings, Page 31

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 13

[]((!pc0 &
!pc1 & !pc2)
-> ...

x = 1;
y == 2;
...

0

1

2

x = 1

y == 2

0

1

2

x' = 1

None

parsing

program graphsource listing graph of actions

0

1

2

True

y = 2

graph of guards

to logic

to guard

Promela-like syntax
temporal logic syntax

flatten

schedule

[]((pc = 0) ->
(X(pc = 1) &
...

GR(1) spec

bitblast

bounded
integer
arithmetic

propositional

(a) Compiler architecture.

����� �������

�����

���������������������������� ��������������������������������

�����������������������������������

(b) Program graph that corresponds
to process maintain_lock in List-
ing 1.

Figure 3: Compiling programs to temporal logic.
no liveness assumptions. The reason is that the system can “hide” in atomic execution forever,
preventing the environment from satisfying its liveness assumptions, thus winning trivially. In
order to avoid this, the environment liveness goals must be disjoined with strong fairness, a
persistence property (), which is outside of the GR(1) fragment. An extension to use a
full LTL synthesizer is possible, though not expected to scale as well. Labels in the code that
contain “progress” result in accepting states (liveness conditions). Those expressions described
but not defined above, the initial conditions, and a listing into assumptions and assertions can
be found in the technical report [35].

5 Implementation

The implementation is written in Python and available [1, 2, 5] under a BSD license. The
frontend comprises of a parser generator that uses Ply (Python lex-yacc) [14]. The parser
for the proposed language subclasses and extends a separate parser for Promela [2], to enable
use of the latter also by those interested in verification activities. After parsing and program
graph construction, the translation described in Section 4 is applied [1]. This results in linear
temporal logic formulae that contain modular integer arithmetic. At this point, each ltl block
is syntactically checked to be in the GR(1) fragment, and split into initial condition, action, and
recurrence conjuncts [5]. The past fragment is then translated using temporal testers [54]. In
the future, the syntactic check can be removed, and a full LTL synthesis algorithm used.

The next step encodes signed arithmetic in bitvector logic using two’s complement represen-
tation [58]. The resulting formulae are in the input syntax recognized by the Slugs synthesizer
[32]. This prefix syntax includes memory buffers, which enable avoiding repetition of formu-
lae. For example, $ 3 x a b & ?1 ?0 | ?2 ! ?0 describes the ternary conditional
ite(x,a,b). Memory buffers prevent the bitblasted formulae from blowing up. The Slugs dis-
tribution includes an encoder of unsigned addition and comparison into bitvector logic using
memory buffers. Here, signed arithmetic and arrays are supported. The bitblaster code is a
separate module, which can be reused as a backend to other frontends. The resulting formula
is passed to the Slugs synthesis tool to check for realizability and construct a winning strategy
as a Mealy transducer.

SYNT 2015 Informal PRE-proceedings, Page 32

14 A multi-paradigm language for reactive synthesis

2 3 4 5 6 7 8 91011
Number of masters

10-1

100

101

102

T
im

e
 r

a
ti

o
s

total

reordering

realizability

strategy

2 3 4 5 6 7 8 91011
Number of masters

0

50

100

150

200

250

300

350

400

450

S
iz

e
 r

a
ti

o
s

peak total nodes

strategy nodes

all vars

env vars

2 3 4 5 6 7 8 91011
Number of masters

10-1

100

101

102

R
a
ti

o
 r

a
ti

o
s

reordering / total time

strategy / total nodes

env / total vars

strategy construction /
 realizability time

(a) Conjunction divided by BA, no reordering.

0 5 10 15 20 25 30 35
100

101

102

103

104

T
o
ta

l
ti

m
e
 (

se
c)

0 5 10 15 20 25 30 35
Number of masters

10-1

100

101

102

103

104

M
a
x
 R

S
S

m
e
m

o
ry

 (
M

B
)

(b) BA, no reordering.

Figure 4: Selection of experimental measurements for the revised AMBA specification.

6 AMBA AHB Case study
Revised specification The ARM processor Advanced Microcontroller Bus Architecture (AMBA)
[9] specifies a number of different bus protocols. Among them, the Advanced High-performance
(AHB) architecture has been studied extensively in the reactive synthesis literature [17, 18, 77,
20, 91, 43, 19].

The AHB bus comprises of masters that need to communicate with slaves, and an arbiter
that controls the bus and decides which master is given access to the bus. The arbiter receives
requests from the masters that desire to access the bus, and must respond in a weakly fair way.
In other words, every master that keeps uninterruptedly requesting the bus must eventually be
granted access to it. Note that the AMBA technical manual [9] does not specify any fairness
requirement, but instead leaves that decision to the designer. For automated synthesis, weak
fairness is one possible formalization that ensures servicing of all the masters.

In addition, a master can request that the access be locked. In the ARM manual, the arbiter
makes no promises as to whether a request for the lock will be granted. If the arbiter does lock
the access, then it guarantees to maintain the lock, until the request for locking is withdrawn
by the master that currently owns the bus. Note that the specification used here requires the
arbiter to lock the bus, whenever requested by the master to be granted next.

A specification for the arbiter appeared in [17], and is presented in detail in [20]. Here, we
expressed the specification of [20] in the proposed language, Listing 1 on 19. In doing so, some
assumptions were weakened and assumption A1 modified, to improve the correspondence with
the ARM technical manual, and reduce the number of environment variables (thus universal
branching). First, we describe the AHB specification, referring to Listing 1. After that, we
summarize the changes, and discuss the experiments.

The specification in Listing 1 has both environment and system variables, as well as as-
sumptions and guarantees. The arbiter is the system, and the environment comprises of slaves
and N + 1 masters. An array request of bits represents the request of each individual master

SYNT 2015 Informal PRE-proceedings, Page 33

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 15

to be given bus ownership, for sending and receiving from a slave of interest. Communication
proceeds in bursts. The bus owner selects which type of burst it desires, by setting the integer
burst. Three lengths of bursts are modeled: single time step (SINGLE), four consecutive time
steps (BURST4), and undefined duration (INCR). The currently addressed slave sets the bit ready
(to true) to acknowledge that it has successfully received data for a burst. While ready is false,
the bus owner cannot change (G1,6), and a BURST4 time step is not counted towards completion
(G3). For this reason, the slaves (environment) are required to recur setting ready to true (A2).
The master can also request that, when it is granted the bus, it should be locked. Each master
can do so by setting a signal. Only two of these signals are modeled here, using the bit variables
grantee_lockreq and master_lockreq (described below).

The arbiter works in primarily two phases, as introduced in [20]. These phases are extraneous
to the standard, and used only to aid in describing the specification. Firstly, the arbiter decides
to which master it will next grant the bus to. The arbiter sets the bit decide to true during
that period. The decision is stored in the form of two variables, grant and lockmemo, which
don’t change while decide is false (G8). The integer grant indicates the master that has been
decided to receive bus ownership after the current owner. For performance reasons, the arbiter
can only grant the bus to a master that requested it (G10), with the exception of a default
master (with index 0).

The bit lockmemo is set to the value of the environment bit grantee_lockreq (G7). The
value grantee_lockreq' represents whether the master grant had requested locked ownership.
In the original specification, an array lockreq of N environment bits is used (denoted by HLOCK
in [20]). This increases significantly the variables with universal quantification. Here, this
array is abstracted by the bit grantee_lockreq. In implementation, the transducer input
grantee_lockreq' should be set equal to the lock request of master grant in the previous
time step, i.e., grantee_lockreq′ ≜ (lockreq)[grant]. In [20], some assumptions are expressed to
constrain the array lockreq, i.e., when masters request locked ownership. The assumptions can
be weakened [34], and by modifying assumption A1 (described below), the array lockreq can be
abstracted by the two bits grantee_lockreq and master_lockeq.

The arbiter promises to lock the bus, until the bus owner master interrupts requesting it. The
owner indicates its lock request by the value master_lockreq'. In implementation, the input
value master_lockreq' should be set equal to the lock request of master, i.e., master_lockreq′ ≜
lockreq[master].

In the second phase, the master changes the bus owner, by updating the integer master to
grant (G4,5). If the grantee had requested a lock, via grantee_lockreq, then that request is
propagated to the bit lock (G4,5). With the bit lock, the arbiter indicates that master has
been given locked access to the bus.

To be weakly fair, each master that keeps uninterruptedly requesting the bus should be
granted ownership. This requirement is described as a Büchi automaton (G9). This

The assumption A1 of [20] requires that for locked undefined-length bursts, the masters
eventually withdraw their request to access the bus. This assumption is not explicit in the ARM
standard, so we modify it, by requiring that masters withdraw only their request for the lock,
not for bus access. This is described as the Büchi automaton withdraw_lock that constrains the
environment. The arbiter grants master locked access by setting the bit lock to true. If lock
is false, then the master (environment) remains in the outer loop, at the else. If lock becomes
true, then the automaton enters the inner loop. In order for the automaton withdraw_lock to
exit the inner loop, the environment must set master_lockreq' to false. This obliges the owner

SYNT 2015 Informal PRE-proceedings, Page 34

16 A multi-paradigm language for reactive synthesis

master to eventually stop requesting locked ownership.
For a SINGLE burst, the burst is completed at the next time step that ready is true, so

the arbiter does not need to lock the bus (since the owner remains unchanged while ready is
false). For a BURST4 burst, the arbiter locks the bus for a predefined length of four successful
beats (G3). This requirement is described by the safety automaton count_bursts. Note that
assumption A1 is not needed for this case. For a INCR burst, the duration is unspecified a priori.
While the owner master continuously requests locked access (with master_lockreq), the arbiter
cannot change the bus owner (G2). This is described by the safety automaton maintain_lock.
When the arbiter grants locked access to the bus for a burst of undefined duration, then the
guard lock && start && (burst == INCR) is true. The process maintain_process enters the
inner loop, and remains there until master_lockreq becomes true. This is where assumption
A1 is required, to ensure that the owner will eventually stop requesting the lock. The arbiter
can then exit the inner loop of maintain_lock. Then, the arbiter can wait outside (start is
false throughout the burst), until the addressed slave sets ready to true, signifying the successful
completion of that burst, and allowing the arbiter to set start and change the bus owner, if
needed.

Some properties not in GR(1) are translated to deterministic Büchi automata in [20]. The
resulting formulae are much less readable, and not easy to modify and experiment with. Above,
we specified these properties directly as processes, with progress states where needed.

Observations By encoding master and grant as integers, and abstracting the array lockreq
by the two variables master_lockreq and grantee_lockreq, the synthesis time was reduced
significantly (by a factor of 100 [34]), but are not sufficient to prevent the synthesized strategies
from blowing up. By also merging the N weak fairness guarantees ∧N−1

i=0 (request[i] → master =
i) into the Büchi automaton (BA) weak_fairness with one accepting state, we were able to
prevent the strategies from blowing up, and synthesize up to 33 masters, Fig. 4b. The synthesis
time for 16 masters is in the order of 5 minutes, and peak memory consumption less than 1GB.
To our knowledge, in previous works, the maximal number of masters has been 16, the strategies
were blowing up, and the runtimes were significantly longer (21 hours for 12 masters in [20], and
more than an hour in [43] for 16 masters).

Measurements To identify what caused this difference, we conducted experiments for 8 dif-
ferent combinations: original vs revised spec, conjunction vs BA, reordering during strategy
construction enabled/disabled, Table 1. We collected detailed measurements with instrumenta-
tion that we inserted into Slugs, available at [3]. Some of these are shown in Fig. 5, and the
complete set can be found in the technical report [34] (the language is described in [35]). The
experiments were run on an Intel(R) Xeon® X5550 core, with 27 GB RAM, running Ubuntu
14.04.1. The maximal memory limit of Cudd [94] was set to 16 GB.

We found that dynamic BDD reordering during construction of a strategy was the reason for
poor performance of conjoined liveness goals, as opposed to a single BA. The implementation
of the GR(1) synthesis algorithm in Slugs has three phases:

1. Computing the winning region, while memoizing the iterates of the fixpoint iteration, as
BDDs.

2. Construction of individual strategies, one for each recurrence goal.

SYNT 2015 Informal PRE-proceedings, Page 35

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 17

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.5

1.0

1.5

2.0

R
e
o
rd

e
ri

n
g
 (

m
s)

1e5

0.0 0.5 1.0 1.5 2.0
1e5

6

4

2

0

2

4

6

G
o
a
l
j

1e 2

0.0 0.5 1.0 1.5 2.0
1e5

0.0

0.2

0.4

0.6

0.8

1.0

A
ss

u
m

p
ti

o
n
 i

0.0 0.5 1.0 1.5 2.0
1e5

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

T
o
ta

l
B

D
D

 N
o
d
e
s

1e6

0.0 0.5 1.0 1.5 2.0
1e5

0
1
2
3
4
5
6
7

Fi
x
e
d
 p

o
in

ts
(B

D
D

 n
o
d
e
s)

1e3
X Y Z

189000 190000 191000 192000 193000 194000 195000 196000
100

101

102

103

104

105

106

In
d
iv

id
u
a
l
st

ra
te

g
ie

s
(B

D
D

 n
o
d
e
s)

ith strategy covered states new states

1.85 1.90 1.95 2.00 2.05 2.10

time (milliseconds) 1e5

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

C
o
m

b
in

e
d
 s

tr
a
te

g
y

(B
D

D
 n

o
d
e
s)

1e5

(a) BA, no reordering, N = 16.

0.0 0.5 1.0
1e5

0.0

0.5

1.0

R
e
o
rd

e
ri

n
g
 (

m
s)

1e5

0 1 2 3 4 5 6 7 8 9
1e4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

G
o
a
l
j

1e1

0 1 2 3 4 5 6 7 8 9
1e4

0.0

0.2

0.4

0.6

0.8

1.0

A
ss

u
m

p
ti

o
n
 i

0 1 2 3 4 5 6 7 8 9
1e4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

T
o
ta

l
B

D
D

 N
o
d
e
s

1e5

0 1 2 3 4 5 6 7 8
1e4

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Fi
x
e
d
 p

o
in

ts
(B

D
D

 n
o
d
e
s)

1e3
X Y Z

71100 71200 71300 71400 71500 71600 71700
100

101

102

103

104

In
d
iv

id
u
a
l
st

ra
te

g
ie

s
(B

D
D

 n
o
d
e
s)

ith strategy covered states new states

7.0 7.2 7.4 7.6 7.8 8.0 8.2

time (milliseconds) 1e4

0.0

0.5

1.0

1.5

2.0

2.5

C
o
m

b
in

e
d
 s

tr
a
te

g
y

(B
D

D
 n

o
d
e
s)

1e5

(b) Conjunction, with reordering, N = 16.

Figure 5: Measurements during phases of: (1) realizability, (2) sub-strategy, and (3) combined
strategy construction. The top 4 plots are over all phases, the fixpoints over (1), the individual
strategies over (2), and the bottom plot over (3). The revised specification is used.

3. Combination of the individual strategies into a single transducer, which iterates through
them.

In Slugs, variable reordering [90] is enabled during the first two phases, but disabled in the last
one. If the recurrence goals are conjoined into a formula of the form ∧

, then the memory
needed for synthesis blows up Fig. 4a, for both the original and revised specifications. Using a
BA, the revised specification scales without blowup.

If reordering is enabled during the last phase (combined transducer construction), then
the specification with a conjunction can be synthesized without blowup. With a BA, turning
on reordering in the last phase has mildly negative effect, because it can trigger unnecessary
reordering. We used the group sifting algorithm [82, 90] for reordering.

SYNT 2015 Informal PRE-proceedings, Page 36

18 A multi-paradigm language for reactive synthesis

Table 1: Overview of results.

Strategy
reordering

Specification
original revised

Conjunction of fairness with slow fast
w/o memory blowup memory blowup

Büchi automaton with very slow ok (slower)
w/o slow ok

Enabling dynamic BDD variable reordering is necessary to prevent the blowup. The con-
junction with reordering enabled in phase 3 outperforms the BA with reordering turned off in
phase 3. This is a consequence mainly of the fact that the BA chains the goals inside the state
space, leading to deeper fixpoint iterations, and has slightly larger state space, due to the nodes
of the automaton maintain_lock.

Reordering typically accounts for most of the runtime (top plot in Fig. 5a). The second
plot shows the currently pursued goal during realizability, and later the sub-strategy under
construction, and the sub-strategy being combined in the final strategy. Each drop in total
BDD nodes (“teeth” in 4th plot) corresponds to an outer fixpoint iteration. The first outer
iteration takes the most time, due to reordering. Later iterations construct subsets, for which
the obtained order remains suitable. The highlighted period corresponds to the construction of
individual strategies. Plots for the other experiments can be found in [34].

Conclusions The major effect of reordering in the final phase of strategy construction can
be understood as follows. Using a BA reduces the goals to only one, so no disjunction of
individual sub-strategies is needed [83]. Also, this encoding shifts the transducer memory (a
counter of liveness goals), from the strategy construction, to the realizability phase (attractor
computations). This slightly increases the state space. Nonetheless, this symbolic encoding
allows the variable ordering more time to gradually adjust to the represented sets.

In contrast, by conjoining liveness goals, the variable order is oblivious during realizability
checking that the sub-strategies will be disjoined at the end. The disjunction of strategies acts
as a shock wave, disruptive to how far from optimal the obtained variable order is. If, by that
phase, reordering has been disabled, then this effect causes exponential blowup.

Overall, the proposed language made experimentation easier and revisions faster, helping to
study variants of the specification. It can be used to explore the sensitivity of a specification,
in the following way. A formula, e.g., requiring weak fairness, can be temporarily replaced with
a process that is one possible refinement of that formula, potentially simplified. In the AMBA
example, one can fix a round robin schedule for selecting the next grantee (temporarily dropping
G10). This is reminiscent of the manual implementation [20]. By doing so, it can be evaluated
whether the synthesizer finds it difficult to pick requestors only, or whether some other factor is
more important, either another part of the specification, or some external factor. For the AMBA
problem, such a simplification showed that some other factor controls the runtime, in particular
reordering, and the increased number of environment variables. Therefore, we believe that it
can prove useful in exploring the sensitivity of specifications, to help the specifier direct their
attention to improve those parts of the specification that impact the most synthesis performance.

SYNT 2015 Informal PRE-proceedings, Page 37

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 19

Listing 1: AMBA AHB specification in the pro-
posed language.

1 #define N 2 /* N + 1 masters */
2 #define SINGLE 0
3 #define BURST4 1
4 #define INCR 2
5 /* variables of masters and slaves
6 A4: initial condition */
7 free env bool ready = false;
8 free env int(0, 2) burst;
9 free env bool request[N + 1] =false;

10 free env bool grantee_lockreq=false;
11 free env bool master_lockreq =false;
12 /* arbiter variables */
13 /* G11: sys initial condition */
14 free bool start = true;
15 free bool decide = true;
16 free bool lock = false;
17 free bool lockmemo;
18 free int(0, N) master = 0;
19 free int(0, N) grant;
20 /* A2: slaves must progress with

receiving data */
21 assume ltl { []<> ready }
22 /* A3: dropped, weakening the

assumptions */
23 /* A1: */
24 assume env proctype withdraw_lock(){
25 progress:
26 do
27 :: lock;
28 do
29 :: ! master_lockreq'; break
30 :: true /* wait */
31 od
32 :: else
33 od
34 }
35 assert ltl {
36 [](
37 /* G1: new access starts only when

slave is ready */
38 (start' −> ready)
39 /* G4,5 */
40 && (ready −> ((master' == grant) &&

(lock' <−> lockmemo')))
41 /* G6 */
42 && (! start' −> (
43 (master' == master) &&
44 (lock' <−> lock)))
45 /* G7: remember if lock requested */
46 && ((−−X decide) −> (lockmemo' <−>

grantee_lockreq'))
47 /* G8 */
48 && (! decide −> (grant' == grant))
49 && ((! −−X decide) −> (lockmemo' <−>

lockmemo))
50 /* G10: grant only to requestors */
51 && ((grant' == grant) || (grant' ==

0) || request[grant'])
52)
53 }
54 sync{ /* synchronous product */
55 /* G9: weak fairness */
56 assert proctype weak_fairness(){
57 int(0, N) count;
58 do
59 :: (! request[count] || (master

== count));
60 if
61 :: (count < N) && (count' ==

count + 1)
62 :: (count == N) && (count'

== 0);
63 progress: skip
64 fi
65 :: else
66 od
67 }
68 /* G2: lock until no lock req */
69 assert sys proctype maintain_lock(){
70 do
71 :: (lock && start && (burst ==

INCR));
72 do
73 :: (! start && !

master_lockreq'); break
74 :: ! start
75 od
76 :: else
77 od
78 }
79 /* G3: for a BURST4 access, count

the "ready" time steps. */
80 assert sys proctype count_burst(){
81 int(0, 3) count;
82 do
83 :: (start && lock &&
84 (burst == BURST4) &&
85 (!ready || (count' == 1)) &&
86 (ready || (count' == 0)));
87 do
88 :: (! start && ! ready)
89 :: (! start && ready && (

count < 3) &&
90 (count' == count + 1))
91 :: (! start && ready && (

count >= 3)); break
92 od
93 :: else
94 od
95 }
96 }

SYNT 2015 Informal PRE-proceedings, Page 38

20 A multi-paradigm language for reactive synthesis

7 Relevant work

Our approach has common elements with program repair [51], program sketching [65], and
syntax-guided synthesis [7]. Program repair aims at modifying an existing program in a conven-
tional programming language. Syntax-guided synthesis uses a grammar to “slice” the admissible
search space of terminating programs. Here, we are interested in reactive programs. Similarly,
program sketching uses templates to restrict the search space and give hints to the synthesizer for
obtaining a complete program. In [15], the authors propose another constraint-based approach
to games, but start directly from logic formulae.

TLA [61, 62] subsumes our proposed language, since it includes quantification, but is intended
as a theorem proving activity, is declarative, and is aimed at verification. Nonetheless, one can
view the proposed translation as from open-Promela to TLA. SMV is a declarative language
[24], and Jtlv [88] an SMV-like language for synthesis specifications, but with no imperative
constructs. AspectLTL is a further declarative extension for aspect-oriented programming [72].

RPromela is an extension of Promela that adds synchronous-reactive constructs (not
in the sense of reactive synthesis) that include synchronous products and channels called ports
[80, 81]. Its semantics are defined in terms of stable states, where the synchronous product blocks,
waiting for message reception from its global ports. RPromela does not address modeling of the
environment, nor declarative elements. Besides, synchronous-reactive languages like Esterel,
Quartz (imperative textual), Statecharts, Argos, SyncCharts (imperative graphical),
Lustre, and Lucid Synchrone (declarative textual) and Signal (declarative graphical) are
by definition deterministic languages intended for direct design of transducers [41, 44, 52]. In
synthesis, non-determinism is an essential feature of the specification.

Our approach has common elements with constraint imperative programming (CIP), intro-
duced with the experimental language Kaleidoscope [38, 39, 40, 68], one of the first attempts
to integrate the imperative and declarative constraint programming paradigms. An observation
from [38], which applies also here, is that specifiers need to express two types of relations: long-
lived (best described declaratively), and sequencing relations (more naturally expressed in an
imperative style). However, CIP does not ensure correct reactivity, because the constraints are
solved online. Constraints are a related approach that uses constraints for indirect assignment
to imperative variables is [63].

The translation from Promela to declarative formalisms has been considered in [11, 48, 26]
and decision diagrams in [13]. These translations aim at verification, do not have LTL as target
language, and either have limited support for atomicity [26], no details [11], or programs graphs
semantics that do not match Promela [48].

8 Conclusions

We have presented a language for reactive synthesis that combines declarative and imperative
elements to allow using the most suitable paradigm for each requirement, to write readable
specifications. By expressing the AMBA specification in a multi-paradigm language, it became
easier to experiment and transform it into one that led to efficient synthesis that improved
previous results by two orders of magnitude. Besides the AMBA specification, other examples
can be found in the code repository [1].

SYNT 2015 Informal PRE-proceedings, Page 39

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 21

Acknowledgments This work was supported by STARnet, a Semiconductor Research Cor-
poration program, sponsored by MARCO and DARPA. The first author was partially supported
by a graduate research fellowship from the Jet Propulsion Laboratory, over the summer of 2014.

References
[1] open-Promela compiler (Python package). Available at https://github.com/johnyf/

openpromela.
[2] Promela parser (Python package). Available at https://github.com/johnyf/promela.
[3] Slugs instrumentation on branch printstats. Available at https://github.com/johnyf/slugs.
[4] dd: Decision diagrams (Python package). Available at https://github.com/johnyf/dd.
[5] omega: Symbolic and enumerated data structures and algorithms for manipulating ω-regular sets

(Python package). Available at https://github.com/johnyf/omega.
[6] Martín Abadi & Leslie Lamport (1994): Open Systems in TLA. In: PODC, pp. 81–90,

doi:10.1145/197917.197960.
[7] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A

Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak & Abhishek Udupa (2013): Syntax-
guided synthesis. In: FMCAD, pp. 1–17, doi:10.1109/FMCAD.2013.6679385.

[8] Rajeev Alur & Salvatore La Torre (2004): Deterministic Generators and Games for LTL Fragments.
ACM Trans. Comput. Logic 5(1), pp. 1–25, doi:10.1145/963927.963928.

[9] ARM Ltd. (1999): AMBA™ Specification, Rev 2.0 edition. Available at http://www-micro.deis.
unibo.it/~magagni/amba99.pdf.

[10] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. The MIT Press.
[11] Michael Baldamus & Jochen Schröder-Babo (2001): P2B: A Translation Utility for Linking

Promela and Symbolic Model Checking. In: SPIN, pp. 183–191, doi:10.1007/3-540-45139-0_11.
[12] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Milan Lenčo, Petr Ročkai,

Vladimír Štill & Jiří Weiser (2013): DiVinE 3.0 – An Explicit-State Model Checker for Multi-
threaded C & C++ Programs. In: CAV, 8044, pp. 863–868, doi:10.1007/978-3-642-39799-8_60.

[13] Vincent Beaudenon, Emmanuelle Encrenaz & Sami Taktak (2010): Data decision diagrams for
promela systems analysis. STTT 12(5), pp. 337–352, doi:10.1007/s10009-010-0135-0.

[14] David M. Beazley: PLY (Python Lex-Yacc) v3.4. Available at http://www.dabeaz.com/ply/ply.
html.

[15] Tewodros Beyene, Swarat Chaudhuri, Corneliu Popeea & Andrey Rybalchenko (2014): A
constraint-based approach to solving games on infinite graphs. In: POPL, pp. 221–233,
doi:10.1145/2535838.2535860.

[16] Roderick Bloem, Alessandro Cimatti, Karin Greimel, Georg Hofferek, Robert Könighofer, Marco
Roveri, Viktor Schuppan & Richard Seeber (2010): Ratsy–A new requirements analysis tool with
synthesis. In: CAV, pp. 425–429, doi:10.1007/978-3-642-14295-6_37.

[17] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Martin Wei-
glhofer (2007): Interactive Presentation: Automatic Hardware Synthesis from Specifications: A
Case Study. In: Design, Automation and Test in Europe (DATE), pp. 1188–1193. Available at
http://dl.acm.org/citation.cfm?id=1266366.1266622.

[18] Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Martin
Weiglhofer (2007): Specify, Compile, Run: Hardware from PSL. ENTCS 190(4), pp. 3–16,
doi:10.1016/j.entcs.2007.09.004.

SYNT 2015 Informal PRE-proceedings, Page 40

22 A multi-paradigm language for reactive synthesis

[19] Roderick Bloem, Swen Jacobs & Ayrat Khalimov (2014): Parameterized Synthesis Case Study:
AMBA AHB. In Krishnendu Chatterjee, Rüdiger Ehlers & Susmit Jha, editors: SYNT, EPTCS
157, pp. 68–83, doi:10.4204/EPTCS.157.9. Available at http://arxiv.org/abs/1407.6580v1.

[20] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2012): Synthesis
of Reactive(1) designs. Journal of Computer and System Sciences (JCSS) 78(3), pp. 911–938,
doi:10.1016/j.jcss.2011.08.007.

[21] Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2012):
Acacia+, a tool for LTL synthesis. In: CAV, pp. 652–657, doi:10.1007/978-3-642-31424-7_45.

[22] Manfred Broy (1986): A theory for nondeterminism, parallelism, communication, and concurrency.
TCS 45(0), pp. 1–61, doi:10.1016/0304-3975(86)90040-X.

[23] Randal E. Bryant (1986): Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Comput. 35(8), pp. 677–691, doi:10.1109/TC.1986.1676819.

[24] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin Keighren, Emanuele Olivetti,
Marco Pistore, Marco Roveri & Andrei Tchaltsev (2010): NuSMV 2.5 User Manual. Technical
Report, Fondazione Bruno Kessler, 18 Via Sommarive, 38055 Povo (Trento), Italy.

[25] Ashok K. Chandra, Dexter C. Kozen & Larry J. Stockmeyer (1981): Alternation. JACM 28(1), pp.
114–133, doi:10.1145/322234.322243.

[26] Frank Ciesinski, Christel Baier, Marcus Größer & David Parker (2008): Generating Compact
MTBDD-Representations from Probmela Specifications. In: SPIN, pp. 60–76, doi:10.1007/978-
3-540-85114-1_7.

[27] Edsger W. Dijkstra (1975): Guarded Commands, Nondeterminacy and Formal Derivation of Pro-
grams. CACM 18(8), pp. 453–457, doi:10.1145/360933.360975.

[28] M.B. Dwyer, G.S. Avrunin & J.C. Corbett (1999): Patterns in property specifications for finite-state
verification. In: ICSE, pp. 411–420, doi:10.1145/302405.302672.

[29] Rüdiger Ehlers (2011): Experimental aspects of synthesis. EPTCS 50, doi:10.4204/EPTCS.50.
[30] Rüdiger Ehlers (2011): Generalized Rabin(1) synthesis with applications to robust system synthesis.

In: NFM, pp. 101–115, doi:10.1007/978-3-642-20398-5_9.
[31] Rüdiger Ehlers (2011): Unbeast: Symbolic Bounded Synthesis. In: TACAS, pp. 272–275,

doi:10.1007/978-3-642-19835-9_25.
[32] Rüdiger Ehlers & Vasumathi Raman (2014): Low-Effort Specification Debugging and Analysis.

EPTCS 157, pp. 117–133, doi:10.4204/EPTCS.157.12.
[33] Ioannis Filippidis & contributors (2013): List of verification and synthesis tools. Available at

https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md.
[34] Ioannis Filippidis & Richard M. Murray (2015): Revisiting the AMBA AHB bus case study. Tech-

nical Report CaltechCDSTR:2015.004, California Institute of Technology, Pasadena, CA. Available
at http://resolver.caltech.edu/CaltechCDSTR:2015.004.

[35] Ioannis Filippidis, Richard M. Murray & Gerard J. Holzmann (2015): Synthesis from multi-
paradigm specifications. Technical Report CaltechCDSTR:2015.003, California Institute of Tech-
nology, Pasadena, CA. Available at http://resolver.caltech.edu/CaltechCDSTR:2015.003.

[36] Bernd Finkbeiner & Sven Schewe (2013): Bounded synthesis. International Journal on Software
Tools for Technology Transfer (STTT) 15(5-6), pp. 519–539, doi:10.1007/s10009-012-0228-z.

[37] Robert W. Floyd (1967): Nondeterministic Algorithms. JACM 14(4), pp. 636–644,
doi:10.1145/321420.321422.

[38] Bjorn N. Freeman-Benson (1990): Kaleidoscope: Mixing Objects, Constraints, and Imperative
Programming. In: OOPSLA/ECOOP, pp. 77–88, doi:10.1145/97946.97957.

[39] Bjørn N. Freeman-Benson & Alan Borning (1992): Integrating Constraints with an Object-Oriented
Language. In: ECOOP, pp. 268–286, doi:10.1007/BFb0053042.

SYNT 2015 Informal PRE-proceedings, Page 41

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 23

[40] B.N. Freeman-Benson & A Borning (1992): The design and implementation of Kalei-
doscope’90-A constraint imperative programming language. In: ICCL, pp. 174–180,
doi:10.1109/ICCL.1992.185480.

[41] Abdoulaye Gamatié (2010): Designing embedded systems with the Signal programming language:
synchronous, reactive specification. Springer, doi:10.1007/978-1-4419-0941-1.

[42] Jeff Gennari, Shaun Hedrick, Fred Long, Justin Pincar & Robert Seacord (2007): Ranged Integers
for the C Programming Language. Technical Note CMU/SEI-2007-TN-027, Software Engineering
Institute, Carnegie Mellon University. Available at http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=8265.

[43] Yashdeep Godhal, Krishnendu Chatterjee & Thomas A Henzinger (2013): Synthesis of AMBA AHB
from formal specification: a case study. International Journal on Software Tools for Technology
Transfer (STTT) 15(5-6), pp. 585–601, doi:10.1007/s10009-011-0207-9.

[44] Nicolas Halbwachs (1993): Synchronous Programming of Reactive Systems. Engineering and Com-
puter Science 215, Springer, doi:10.1007/978-1-4757-2231-4. Available at http://www-verimag.
imag.fr/~halbwach/newbook.pdf.

[45] Charles Antony Richard Hoare (1985–2004): Communicating sequential processes. 178, Prentice-
Hall. Available at http://www.usingcsp.com/cspbook.pdf.

[46] Gerard J. Holzmann: Promela Language Reference (http://spinroot.com/spin/Man/promela.
html). Available at http://spinroot.com/spin/Man/promela.html.

[47] Gerard J. Holzmann (2003): The SPIN Model Checker, the: Primer and Reference Manual.
Addison-Wesley.

[48] Yong Jiang & Zongyan Qiu (2012): S2N: model transformation from Spin to NuSMV. In: SPIN,
pp. 255–260, doi:10.1007/978-3-642-31759-0_20.

[49] Barbara Jobstmann & Roderick Bloem (2006): Optimizations for LTL synthesis. In: FMCAD, pp.
117–124, doi:10.1109/FMCAD.2006.22.

[50] Barbara Jobstmann, Stefan Galler, Martin Weiglhofer & Roderick Bloem (2007): Anzu: A tool
for property synthesis. In: CAV, pp. 258–262, doi:10.1007/978-3-540-73368-3_29.

[51] Barbara Jobstmann, Andreas Griesmayer & Roderick Bloem (2005): Program repair as a game.
In: CAV, pp. 226–238, doi:10.1007/11513988_23.

[52] Muriel Jourdan, Fabienne Lagnier, R Maraninchi & Pascal Raymond (1994): A multiparadigm
language for reactive systems. In: ICCL, pp. 211–218, doi:10.1109/ICCL.1994.288379.

[53] Robert M. Keller (1976): Formal Verification of Parallel Programs. CACM 19(7), pp. 371–384,
doi:10.1145/360248.360251.

[54] Yonit Kesten, Amir Pnueli & Li-on Raviv (1998): Algorithmic verification of linear temporal logic
specifications. In: ICALP, 1443, pp. 1–16, doi:10.1007/BFb0055036.

[55] Uri Klein, Nir Piterman & Amir Pnueli (2012): Effective synthesis of asynchronous systems from
GR(1) specifications. In: VMCAI, pp. 283–298, doi:10.1007/978-3-642-27940-9_19.

[56] M. Kloetzer & C. Belta (2008): A Fully Automated Framework for Control of Linear Systems from
Temporal Logic Specifications. TAC 53(1), pp. 287–297, doi:10.1109/TAC.2007.914952.

[57] H. Kress-Gazit, G.E. Fainekos & G.J. Pappas (2009): Temporal-Logic-Based Reactive Mis-
sion and Motion Planning. IEEE Transactions on Robotics (TRO) 25(6), pp. 1370–1381,
doi:10.1109/TRO.2009.2030225.

[58] Daniel Kroening & Ofer Strichman (2008): Decision procedures: An algorithmic point of view.
Springer.

[59] O. Kupferman & M.Y. Vardi (2005): Safraless decision procedures. In: FOCS, pp. 531–540,
doi:10.1109/SFCS.2005.66.

SYNT 2015 Informal PRE-proceedings, Page 42

24 A multi-paradigm language for reactive synthesis

[60] Orna Kupferman (2012): Recent Challenges and Ideas in Temporal Synthesis. In: SOFSEM, pp.
88–98, doi:10.1007/978-3-642-27660-6_8.

[61] Leslie Lamport (1994): The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst. 16(3),
pp. 872–923, doi:10.1145/177492.177726.

[62] Leslie Lamport (2002): Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley. Available at http://research.microsoft.com/en-us/um/
people/lamport/tla/book.html.

[63] Leslie Lamport & Fred B. Schneider (1985): Constraints: A uniform approach to aliasing and
typing. In: POPL, pp. 205–216, doi:10.1145/318593.318640.

[64] K Rustan M Leino (2010): Dafny: An automatic program verifier for functional correctness. In:
LPAR, 6355, pp. 348–370, doi:10.1007/978-3-642-17511-4_20.

[65] A Solar Lezama (2008): Program synthesis by sketching. Ph.D. thesis, Citeseer. Available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html.

[66] Orna Lichtenstein, Amir Pnueli & Lenore Zuck (1985): The glory of the past. In: Logics of
Programs, 193, pp. 196–218, doi:10.1007/3-540-15648-8_16.

[67] S.C. Livingston, R.M. Murray & J.W. Burdick (2012): Backtracking temporal logic synthesis for
uncertain environments. In: ICRA, pp. 5163–5170, doi:10.1109/ICRA.2012.6225208.

[68] Gus Lopez, Bjorn Freeman-Benson & Alan Borning (1994): Implementing Constraint Imperative
Programming Languages: The Kaleidoscope’93 Virtual Machine. In: OOPSLA, pp. 259–271,
doi:10.1145/191080.191118.

[69] Z Manna & Amir Pnueli (1990): Tools and rules for the practicing verifier. Technical Report
CS-TR-90-1321, Stanford University, CA, USA. Available at http://i.stanford.edu/pub/cstr/
reports/cs/tr/90/1321/CS-TR-90-1321.pdf.

[70] Zohar Manna & Amir Pnueli (1989): The anchored version of the temporal framework. In: Linear
time, branching time and partial order in Logics and models for concurrency, LNCS 354, Springer,
pp. 201–284, doi:10.1007/BFb0013024.

[71] Zohar Manna & Amir Pnueli (1990): A Hierarchy of Temporal Properties. In: PODC, pp. 377–410,
doi:10.1145/93385.93442.

[72] Shahar Maoz & Yaniv Sa’ar (2011): AspectLTL: An Aspect Language for LTL Specifications. In:
Aspect-oriented Software Development (AOSD), ACM, pp. 19–30, doi:10.1145/1960275.1960280.

[73] John McCarthy (1959): A basis for a mathematical theory of computation. In P. Braffort &
D. Hirschberg, editors: Computer Programming and Formal Systems, Studies in Logic and the
Foundations of Mathematics 26, North-Holland, pp. 33–70, doi:10.1016/S0049-237X(09)70099-0.

[74] Kenneth Lauchlin McMillan (1992): Symbolic Model Checking: An Approach to the State Explosion
Problem. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA, doi:10.1007/978-1-4615-
3190-6. Available at http://www.kenmcmil.com/pubs/thesis.pdf. UMI Order No. GAX92-24209.

[75] George H Mealy (1955): A method for synthesizing sequential circuits. Bell System Technical
Journal 34(5), pp. 1045–1079, doi:10.1002/j.1538-7305.1955.tb03788.x.

[76] Edward F Moore (1956): Gedanken-experiments on sequential machines. Automata studies 34, pp.
129–153.

[77] A. Morgenstern (2010): Symbolic controller synthesis for LTL specifications. Ph.D. thesis,
Computer Science. Available at http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:
386-kluedo-25721.

[78] A. Morgenstern & K. Schneider (2011): A LTL Fragment for GR(1)-Synthesis. EPTCS 50, pp.
33–45, doi:10.4204/EPTCS.50.3.

[79] David E Muller, Ahmed Saoudi & Paul E Schupp (1986): Alternating automata, the weak monadic
theory of the tree, and its complexity. In: ICALP, pp. 275–283, doi:10.1007/3-540-16761-7_77.

SYNT 2015 Informal PRE-proceedings, Page 43

Ioannis Filippidis, Richard M. Murray, Gerard J. Holzmann 25

[80] Elie Najm & Frank Olsen (1996): Protocol Verification with Reactive Promela/RSPIN. In: SPIN,
pp. 109–128. Available at http://spinroot.com/spin/Workshops/ws96/Ol.pdf.

[81] Elie Najm & Frank Olsen (1996): Reactive EFSMs — Reactive Promela/RSPIN. In: TACAS, pp.
349–368, doi:10.1007/3-540-61042-1_54.

[82] Shipra Panda & Fabio Somenzi (1995): Who are the variables in your neighbourhood. In: ICCAD,
pp. 74–77, doi:10.1109/ICCAD.1995.479994.

[83] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of Reactive(1) designs. In: VMCAI,
pp. 364–380, doi:10.1007/11609773_24.

[84] A. Pnueli & R. Rosner (1989): On the Synthesis of a Reactive Module. In: POPL, pp. 179–190,
doi:10.1145/75277.75293.

[85] Amir Pnueli (1977): The temporal logic of programs. In: FOCS, pp. 46 –57,
doi:10.1109/SFCS.1977.32.

[86] Amir Pnueli & Uri Klein (2009): Synthesis of programs from temporal property specifications. In:
MEMOCODE, pp. 1–7, doi:10.1109/MEMCOD.2009.5185372.

[87] Amir Pnueli & Roni Rosner (1989): On the Synthesis of an Asynchronous Reactive Module. In:
ICALP, pp. 652–671, doi:10.1007/BFb0035790.

[88] Amir Pnueli, Yaniv Sa’ar & Lenore D Zuck (2010): Jtlv: A framework for developing verification
algorithms. In: CAV, pp. 171–174, doi:10.1007/978-3-642-14295-6_18.

[89] Roni Rosner (1992): Modular synthesis of reactive systems. Ph.D. thesis, Weizmann Institute of
Science, Rehovot, Israel. Available at http://www.researchgate.net/publication/238759536_
Modular_synthesis_of_reactive_systems/file/50463527f8b648c3ba.pdf.

[90] Richard Rudell (1993): Dynamic variable ordering for ordered binary decision diagrams. In: IC-
CAD, pp. 42–47, doi:10.1109/ICCAD.1993.580029.

[91] Matthias Schlaipfer, Georg Hofferek & Roderick Bloem (2012): Generalized reactivity(1) synthesis
without a monolithic strategy. In: HSVT, pp. 20–34, doi:10.1007/978-3-642-34188-5_6.

[92] Klaus Schneider (2004): Verification of reactive systems: formal methods and algorithms. Springer,
doi:10.1007/978-3-662-10778-2.

[93] Saqib Sohail, Fabio Somenzi & Kavita Ravi (2008): A hybrid algorithm for LTL games. In: VMCAI,
pp. 309–323, doi:10.1007/978-3-540-78163-9_26.

[94] Fabio Somenzi (2012): Cudd: CU Decision Diagram package - release 2.5.0. University of Colorado
at Boulder. Available at http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html.

[95] Harald Søndergaard & Peter Sestoft (1992): Non-determinism in functional languages. The Com-
puter Journal 35(5), pp. 514–523, doi:10.1093/comjnl/35.5.514.

[96] Wolfgang Thomas (2008): Solution of Church’s Problem: A tutorial. New Perspectives on Games
and interaction 5.

[97] Peter Van-Roy & Seif Haridi (2004): Concepts, techniques, and models of computer programming.
MIT press.

[98] Moshe Y Vardi (1995): Alternating automata and program verification. In: Computer Science
Today, Springer, pp. 471–485, doi:10.1007/BFb0015261.

[99] Moshe Y Vardi (1996): An automata-theoretic approach to linear temporal logic. In: Logics for
concurrency, LNCS 1043, Springer, pp. 238–266, doi:10.1007/3-540-60915-6_6.

[100] Igor Walukiewicz (2004): A Landscape with Games in the Background. LICS 0, pp. 356–366,
doi:10.1109/LICS.2004.1319630.

[101] Tichakorn Wongpiromsarn, Ufuk Topcu & Richard M Murray (2013): Synthesis of control protocols
for autonomous systems. Unmanned Systems 1(01), pp. 21–39, doi:10.1142/S2301385013500027.

SYNT 2015 Informal PRE-proceedings, Page 44

Submitted to:
SYNT 2015

c© R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur
This work is licensed under the
Creative Commons Attribution License.

Compositional Algorithms for Succinct Safety Games

Romain Brenguier∗, Guillermo A. Pérez†,
Jean-François Raskin∗, Ocan Sankur∗

{rbrengui,gperezme,jraskin,osankur}@ulb.ac.be

Université Libre de Bruxelles – Brussels, Belgium

We study the synthesis of circuits for succinct safety specifications given in the AIG format. We show
how AIG safety specifications can be decomposed automatically into sub-specifications. Then we
propose symbolic compositional algorithms to solve the synthesis problem compositionally starting
for the sub-specifications. We have evaluated the compositional algorithms on a set of benchmarks
including those proposed for the first synthesis competition organised in 2014 by the Synthesis Work-
shop affiliated to the CAV conference. We show that a large number of benchmarks can be decom-
posed automatically and solved more efficiently with the compositional algorithms that we propose
in this paper.

1 Introduction

We study the synthesis of circuits for succinct safety specifications given in the AIG format. An AIG
file for synthesis describes a circuit that compactly defines a transition relation between valuations for
latches, uncontrollable and controllable input signals. The circuit contains a special latch called the error
latch. Initially, all latches are false, and the controller chooses values for the controllable input signals so
as to always keep the error latch low (safety objective), no matter how the environment chooses values
for the uncontrollable input signals. The AIG format is monolithic in the sense that it is not explicitly
structured into subsystems. This is unfortunate as in general, complex systems or specifications are built
of smaller sub-parts and taking into account this structure may be a definite advantage.

And-Inverter Graphs (AIG) have been proposed as a way to provide a simple and compact file format
for a model checking competition affiliated to CAV 2007 (see http://fmv.jku.at/aiger/FORMAT).
This format has been extended to be the input format for the 2014 reactive synthesis competition. Because
the synthesis competition uses the AIG format, and this format is monolithic, all the tools that took part
in the 2014 reactive synthesis competition solved the synthesis problems monolithically. Nevertheless,
the specifications that were proposed during the 2014 synthesis competition are, for a large part of them,
generated from higher level descriptions of systems that bear structure. For example, two of the most
interesting sets of benchmarks, GenBuf and AMBA, are generated from Reactive(1) specifications (a
tractable subset of LTL specifications) [12], or directly from LTL specifications that are conjunctions of
smaller LTL sub-formulas.

In this paper, we show that part of the structure lost during the AIG format translation can be re-
covered and used to solve the synthesis problem compositionally. First, we propose a static analysis of
the AIG file that returns, when possible, a decomposition of the circuit into smaller sub-circuits with
their own safety specifications. Then we provide three different algorithms that first solve the sub-games

∗Authors supported by the ERC inVEST (279499) project.
†Author supported by F.R.S.-FNRS fellowship.

SYNT 2015 Informal PRE-proceedings, Page 45

2 Compositional Algorithms for Succinct Safety Games

corresponding to the sub-circuits and then aggregate, following three different heuristics, the results ob-
tained on the sub-games. Namely, once we have the solution of all the sub-games we aggregate them by
(i) taking their intersection – which, we show, over-approximates the actual solution of the general game
– and applying the usual fixpoint algorithm to it; (ii) assigning a score to each pair of solutions based
on the number of variables shared and the size of the BDDs obtained after their intersection and using
said score to aggregate (pair by pair) all the solutions; (iii) trying to refine them using information from
a single step of the fixpoint computation on the general game (i.e.projecting the resulting “bad” states
onto each sub-game). We have implemented the decomposition, the compositional synthesis algorithms,
and evaluated the approach on the 2014 reactive synthesis competition benchmarks as well as on new
benchmarks produced from large LTL specifications.

Related Work. In [8, 10], compositional algorithms are proposed for the LTL realizability problem.
The LTL formulas considered there are assumed to be conjunctions of smaller LTL formulas, and so the
structure of the specification is directly available to them, while in our case it has to be recovered. Also,
the main data-structures used there are based on antichains while we use BDDs. In symbolic model
checking algorithms, partitioned transition relations [5] are widely used whenever the system is made
of several components. Here, the goal is to compute the one-step successor states without explicitly
computing the conjunction of the transition relations for each component. The image computation is
rather done using quantification scheduling heuristics which tries to apply variable quantification as
early as possible inside the conjunction; see e.g. [17]. We also use partitioned transition relations in our
algorithms: the next-state function for each latch is stored separately. Unlike forward model checking
algorithms, synthesis algorithms proceed backwards, so we can use the composition operation provided
by BDD libraries to compute predecessors, and we do not need any early quantification heuristics.

Structure of the paper. In Section 2, we fix notation and recall the definitions needed to present our
results. Then, in Section 3, we describe the class of decompositions our algorithms accept as input, we
give some examples of how to decompose a succinct safety specification given by an extended AIGER
file and outline the algorithm we implemented to get such a decomposition. Our algorithms are described
in detail in Section 4 and the results of our tests are presented in Section 5.

2 Preliminaries

Let B = {0,1}. Given a set of variables A, a valuation over A is an element of BA, and a set of val-
uations over A is represented by its characteristic function f : BA → B. We will write f (A) to make
the dependency on the variables A explicit. Given two disjoint sets of variables A,B, let us write BA,B

for BA ×BB. Consider variable sets A ⊆ B. We define the projection of a valuation v : BB to A as
v ↓A: BA, with v ↓A (a) = 1 if, and only if v(a) = 1. We extend this notation to functions f : BB→ B by
f ↓A: BA→ B, defined as f ↓A (v) if, and only if ∃v′ ∈ BB, f (v′), and v = v′ ↓A. We define the lifting of a
set f : BA→ B in BB by f ↑B (v) = 1 if, and only if f (v ↓A) = 1. For a set of variables A = {a1,a2, . . .},
let us write A′ = {a′1,a′2, . . .} the set of primed variables. For f (A), let f (A′) denote the characteristic
function f (A) where each variable a ∈ A has been renamed as its primed copy a′ ∈ A′.

Symbolic Games. We formalize the reactive synthesis problem as a two-player turn-based game with
safety objective described symbolically. We consider games defined by sequential synchronous circuits,
encoded in the AIGER format. More precisely, a game is a tuple G = 〈L,Xu,Xc,(fl)l∈L,err〉, where:

SYNT 2015 Informal PRE-proceedings, Page 46

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 3

1. Xu,Xc,L are finite disjoint sets of Boolean variables representing uncontrollable inputs, control-
lable inputs, and latches respectively;

2. for each latch l ∈ L, fl : BL×BXu×BXc → B is the transition function that gives the valuation of l
in the next step. In practice these functions will be given by And-Inverter Graphs (see below for a
definition).

3. err∈ L is a distinguished latch which indicates whether an error has occurred. We will often modify
the circuit by replacing ferr by some other Boolean function e, which we denote by G[ferr← e].

A state q of game G is a valuation of latches, that is an element of BL. A valuation v in game G is
a valuation of latches and inputs, that is an element of BL,Xu,Xc . We denote the global transition function
δ : BL×BXu×BXc → BL such that δ (v)(l) = fl(v) for each latch l. An execution from valuation v of the
game G is a sequence of valuations (vi)i∈N ∈

(
BL,Xu,Xc

)ω such that v0 = v and for all i,

vi+1 ↓L= δ (vi ↓L,vi ↓Xu ,vi ↓Xc).

The execution is safe if, for all i≥ 0, we have that vi(err) = 0.
Note that symbolic games define game arenas of exponential size but we will only work on their

symbolic representations.

Controller synthesis. The goal of controller synthesis is to find a strategy to determine the controllable
inputs given uncontrollable inputs and the current state (i.e., valuation of the latches) to ensure that the
error state is not reachable. A strategy is a function λ : BL,Xu → BXc . An execution (vi)i∈N is compatible
with λ if for all i ∈ N,

vi ↓Xc= λ (vi ↓L,vi ↓Xu).

A strategy λ is winning if all executions that are compatible with λ are safe. A valuation v is winning
if there exists a strategy λ that is winning from v. We denote W (L,Xu,Xc) the winning valuations of G,
that is the set of valuations that are winning.

And-Inverter Graphs. An And-Inverter Graph (AIG) is a directed acyclic graph with two-input nodes
representing logical conjunction (AND gates), terminal nodes representing inputs, and edges that are
possibly inverted to denote logical negation (NOT gate). Formally, an AIG is a tuple G = 〈V,E, ι〉
such that (V,E) is a directed graph with every vertex having 0 or 2 outgoing edges, and ι : E → B
labels inverted edges with 1. We depict edges (not) labelled by ι as arrows (not) marked with a dark
dot. Figure 1 shows a simple AIG with Boolean variables x1,x2,x3,x4. Each node in the AIG defines
a Boolean function. For example, v1 defines the Boolean function ϕv1 ≡ x1 ∧¬ϕv2 , where ϕv2 is the
corresponding formula defined by v2, since the edge from v1 to v2 is marked as inverted.

The AIGER format (http://fmv.jku.at/aiger/FORMAT) was defined as a standard file format
to describe sequential synchronous circuits (the logic defined as an AIG), and has been used in model
checking and synthesis competitions. In the latter case, the inputs are partitioned into controllable and
uncontrollable (http://www.syntcomp.org/wp-content/uploads/2014/02/Format.pdf). This is
the format that we will assume as representation of the input game for our algorithms. We call an AIG
game, a symbolic game described in the AIGER format.

SYNT 2015 Informal PRE-proceedings, Page 47

4 Compositional Algorithms for Succinct Safety Games

Binary Decision Diagrams. Internally, our tool uses binary decision diagrams (BDD) [4] to represent
Boolean functions used to represent sets of states or (parts of) transition relations. We use classical
operations and notation on BDDs and refer the interested reader to [1] for a gentle introduction to BDDs.
Projection and lifting of functions are easily implemented with BDDs: projecting is done by an existential
quantification and lifting is a trivial operation because it only extends the domain of the function but its
logical representation, i.e. its Boolean formula, stays the same.

In our algorithms, we often use BDD operations which implement heuristics to reduce the size of the
given BDD, namely, generalized cofactors [13,16]. A generalized cofactor f̂ (X) of f (X) with respect to
g(X) yields a BDD that matches f (X) inside g(X), and is defined arbitrarily outside g(X). This degree of
freedom outside g(X) allows heuristics to reduce the BDD size. We write f̂ (X)= f (X)⇓ g(X). Formally,
we have that f̂ (X)∧g(X) = f (X)∧g(X) and f̂ has at most the size of f . BDD libraries implement the
operations restrict or constrain (see, e.g. [14]), which are specific generalized cofactors.

Classical Algorithms to Solve Safety Games. We recall the basic fixpoint computation for solving
safety games, applied here on symbolic safety games. Let G = 〈L,Xu,Xc,(fl)l∈L,err〉 be a symbolic
game. The complement of the set W (L,Xu,Xc) ↓L can be computed by iterating an uncontrollable prede-
cessors operator. For any set of states S(L), the uncontrollable predecessors of S is defined as

upreG(S) = {q ∈ BL | ∃xu ∈ BXu . ∀xc ∈ BXc : δ (q,xu,xc) ∈ S};

the dual controllable predecessors operator is defined as

cpreG(S) = {q ∈ BL | ∀xu ∈ BXu . ∃xc ∈ BXc : δ (q,xu,xc) ∈ S};

We denote by upre∗G(S) = µX .(S∪upreG(X)), the least fixpoint of the function F : X → S∪upreG(X)
in the µ-calculus notation (see [7]). Note that F is defined on the powerset lattice, which is finite. It
follows from Tarski-Knaster theorem [15] that, because F is monotonic, the fixpoint exists and can be
computed by iterating the application of F starting from any value below it, e.g.the least value of the
lattice. Similarly, we denote by cpre∗G(S) = νX .(S∩ cpreG(X)), the greatest fixpoint of the function
F : X → S∩ cpreG(X)). Dually, we have that, because F is monotonic, the fixpoint exists and can be
computed by iterating the application of F starting from any value above it, e.g.the greatest value of
the lattice. When G is clear from the context, we simply write upre (cpre) instead of upreG (cpreG).
The Proposition follows from well-known results about the relationship between safety games and these
operators (see, e.g., [2]).

Proposition 1. For any symbolic game G = 〈L,Xu,Xc,(fl)l∈L,err〉, we have cpre∗((err 7→ 0) ↑L) =
cpre(W (L,Xu,Xc) ↓L); dually, upre∗((err 7→ 1) ↑L)=¬cpre(W (L,Xu,Xc) ↓L)= upre(¬W (L,Xu,Xc) ↓L).

In the rest of the paper, we assume a black-box procedure solve_vals which, for a given symbolic
game, computes the corresponding winning valuations. In practice, solve_vals can be implemented
using upre or cpre. Formally,

solve_vals(G) = {(q,xu,xc) ∈ BL,Xu,Xc | q(err) = 0∧δ (q,xu,xc) 6∈ cpre∗((err 7→ 0)↑L)}.

Note that solve_vals gives the set of winning valuations, and not the set of winning states. The interpre-
tation of solve_vals(G) is that it is the maximal permissive strategy: any strategy for the controller that
ensures to stay within this set is a winning strategy. We also consider procedure solve_states(G) =
{q ∈ BL | q ∈ cpre∗ ((err 7→ 0)↑L)} which returns the set of winning states.

SYNT 2015 Informal PRE-proceedings, Page 48

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 5

Optimizations Using Generalized Cofactors. Let us now establish the correctness of two optimiza-
tions we use in the sequel.

We first formalize the dependence on latches as follows. The cone of influence (see, e.g., [6]) of ei,
written cone(ei), is the set of variables on which ei depends, that is, cone(Φ) ⊆ L∪ Xu ∪ Xc is the
minimal set of variables such that if x ∈ cone(Φ) then either (∃x : Φ) 6⇔ Φ or x ∈ cone(fy) for some
y ∈ cone(Φ)∩L. For convenience, we denote by coneL(Φ) the set cone(Φ)∩L.

Observe that we have defined the cone of influence of a Boolean function semantically. That is to
say, a variable x is in the cone of influence of a function Φ if and only if the set of valuations satisfying Φ
changes for some fixed valuation of x. Since we consider functions given by AIGs, the cone of influence
can be over-approximated by exploring the AIG starting from the vertex corresponding to function Φ,
adding all latches and inputs visited and the cones of influence of the latches – computed recursively.
In our implementation we use this over-approximation when working on the AIG only and we use the
definition on the semantics to obtain an algorithm on BDDs – which we use when working with BDDs.

Given an over-approximation Λ of the winning valuations (i) we first simplify the transition relation
and keep it precise only in Λ, (ii) we further modify the transition relation by making every transition not
allowed by Λ go to an error state, i.e.change ferr. In fact, correctness of the first optimization requires that
the second one be used as well. The following result summarizes the properties of these optimizations.

Lemma 1. For any symbolic game G = 〈L,Xu,Xc,(fl)l∈L,err〉, and any Λ(L,Xu,Xc) ⊇W (L,Xu,Xc), if
we write f ′l = fl ⇓ Λ for all l ∈ L, we have

solve_vals(G) = solve_vals(〈coneL(Λ),Xu,Xc,(f ′l)l∈coneL(Λ)〉[f ′err←¬Λ]) ↑L .

Proof. We first show that solving the game with error function ¬Λ yields the same winning valuations
as for ferr. For that we will use two basic properties of the winning valuations: first if f ⊆ f ′ then

solve_vals(G[ferr← f ′])⊆ solve_vals(G[ferr← f]);

secondly
solve_vals(G[ferr←¬solve_vals(G)]) = solve_vals(G),

this is because if an execution compatible with strategy λ reaches ¬solve_vals(G), then by defini-
tion of winning valuations it can be extended from there to an execution compatible with λ that is
unsafe. Together with the fact that ferr ⊆ ¬Λ ⊆ ¬W , these properties imply that solve_vals(G) =
solve_vals(G[ferr ← ¬Λ]). It is clear that one can consider only the variables in coneL(Λ) for this
computation, and thus considering H = (〈coneL(Λ),Xu,Xc,(fl)l∈coneL(Λ)〉[ferr←¬Λ]), we have

solve_vals(G) = solve_vals(H) ↑L .

It remains to show that the same set solve_vals(H) is obtained when the functions f ′l are used
transition functions fl . Let us denote G′ = (〈coneL(Λ),Xu,Xc,(f ′l)l∈coneL(Λ)〉[f ′err←¬Λ]). We note that,
for any u⊇ ¬Λ, the following holds:

upre′G(u)∪u = upreH(u)∪u.

Hence, it is straightforward to show by induction that solve_vals(H) = solve_vals(G′).

SYNT 2015 Informal PRE-proceedings, Page 49

6 Compositional Algorithms for Succinct Safety Games

v1

x1 v2

x2

x3 x4

Figure 1: Example AIG

3 Decomposing the Specification

In this section, we describe how we decompose the error function ferr of a given symbolic game into a
disjunction i.e. ferr ≡

(∨
1≤i≤n ei

)
. Notice that if a strategy λ (L,Xu,Xc) ensures that ferr is never true

then it also ensures that ei is never true. We will then give algorithms that solve the game where each ei

is seen as the error function, and combine the obtained solutions into a global solution.
The rationale behind this approach is that the functions ei do not depend on all latches in general, so

solving the game for ei is often efficient.

Sub-game. Given a decomposition of ferr, we define a sub-game Gi by replacing the error function by
ei and considering only variables in its cone of influence. Formally, we write

Gi = 〈coneL(ei),Xu,Xc,(fl)l∈coneL(ei)〉[ferr← ei].

We will often use the notation G[ferr← ei], which consists in replacing the function ferr by ei. In practice,
the size of the symbolic representation of the sub-games are often significantly smaller than that of the
original game. Recall also that winning all the sub-games is necessary to win the global game. We
write Wi(coneL(ei),Xu,Xc) for the winning valuations of Gi. In the implementation, Si and Si ↑L are
represented by the same BDD.

Example 1. Consider the AIG shown in Figure 1 where x1,x2,x3,x4 are all input variables. We would
like to decompose the function defined by the sub-tree rooted at v1 (i.e. the whole tree) which we will
denote by ϕv1 . It should be clear that ϕv1 ≡ x1∧¬ϕv2 where ϕv2 is the function defined by the sub-tree
rooted at v2. In turn, we also have that ϕv2 ≡ x2∧¬x3∧ x4. If we distribute the disjunction from ¬ fv2 we
get that ϕv1 ≡ (x1∧¬x2)∨ (x1∧ x3)∨ (x1∧¬x4). Thus, one possible decomposition of ϕv1 would be to
take e1 = x∧¬x2, e2 = x1∧ x3, and e3 = x1∧¬x4.

The general steps followed in Example 1 above can be generalized into an algorithm which outputs a
decomposition of the error function whenever one exists. Intuitively, the algorithm consists in exploring
all non-inverted edges of the AIG graph from the vertex which defines the error function. If there are
no inverted edges which stopped the exploration, or if all of them lead to leaves, the error function is
in fact a conjunction of Boolean variables and can clearly not be decomposed. Otherwise, there is at
least one inverted edge leading to a node representing an AND gate. In this case, we can push the

SYNT 2015 Informal PRE-proceedings, Page 50

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 7

negation one level down and obtain a disjunction which can be distributed to obtain our decomposition.
Algorithm 2 details the procedure we have implemented. It takes as input an AIG, whether the error
function is inverted, and the vertex verr which defines the error function. It outputs a set of functions
whose conjunction is logically equivalent to the error function.

We have kept our description of Algorithm 2 and Algorithm 1 (called by the former) informal. A
more formal discussion on their correctness is given in Appendix B.

Algorithm 1: get_minput_and(V,E, ι ,v0)

1 to_visit := {v0};
2 pos := {};
3 neg := {};
4 while |to_visit|> 0 do
5 Pop u ∈ to_visit;
6 if u is not a leaf then
7 Let e = (u,v) and e′ = (u,v′) be s.t. e,e′ ∈ E;
8 if ι(e) = 1 then
9 neg := neg∪{v};

10 else
11 to_visit := to_visit ∪{v};
12 if ι(e′) = 1 then
13 neg := neg∪{v};
14 else
15 to_visit := to_visit ∪{v};
16 else
17 pos := pos∪{u};
18 return (pos,neg)

Algorithm 2: decompose(V,E, ι , inv,verr)

1 (pos,neg) := get_minput_and(V,E, ι ,verr);
2 if inv = 1 then
3 return {¬ϕv | v ∈ pos}∪{ϕv | v ∈ neg}
4 if inv = 0 and all v ∈ neg are leaves then
5 return {ϕverr}; /* No decomposition possible */
6 Take v0 ∈ argmax{||get_minput_and(V,E, ι ,v)|| | v ∈ neg}; /* where ||(S1,S2)|| := |S1|+ |S2| */
7 res :=

∧
u∈pos ϕu∧

∧
v∈neg\{v0}¬ϕv;

8 (pos,neg) := get_minput_and(V,E, ι ,v0);
9 return {res∧ (¬ϕv) | v ∈ pos}∪{res∧ϕv | v ∈ neg}

Example 2. Consider a formula given by a set of assumption formulas {Ai(L,Xu) | 1≤ i≤ n} and a set
of guarantees {G j(L,Xu,Xc) | 1≤ j ≤ m}.1 The system we want to synthesize is expected to determine
the controllable inputs in way such that if the assumptions are true, then the guarantees are met. This is
formally stated as Equation 1.

Φ =
(∧

1≤i≤n

Ai
)
=⇒

(∧

1≤ j≤m

G j
)

(1)

1This is actually the way in which the error formula is stated for, e.g., the AMBA benchmarks.

SYNT 2015 Informal PRE-proceedings, Page 51

8 Compositional Algorithms for Succinct Safety Games

a

An Ai

A1

g

G1

G j Gm

Figure 2: One possible AIG for Equation 1

A natural decomposition for the error function ¬Φ would be the following:
∨

1≤ j≤m
(
¬G j ∧

∧
1≤i≤n Ai

)
.

If ¬Φ were given as the AIG depicted in Figure 2, then it is not hard too see that Algorithm 2 would
yield a very similar decomposition. Indeed, as we have not assumed anything in particular about the
formulas Ai and G j we cannot tell whether Algorithm 1 will explore beyond each G j, thus giving us
more sub-games than the proposed decomposition. However, in practice, this is even better as smaller
sub-games usually depend on less variables. This, in turn, could lead to them being easier to solve.

Lemma 2. For each sub-game Gi with new error function ei, we have that

W (L,Xu,Xc)⊆ (Wi ↑L)(L,Xu,Xc).

Proof. For each valuation v′ ∈W (L,Xu,Xc) ↓coneL(ei)∪Xu∪Xc , we select a valuation v ∈W (L,Xu,Xc). Let
λv be a winning strategy in G from v. Since there is no losing outcome for λv, for all xu ∈ BXu ,
λv(δ (v),xu) is such that (δ (v),xu,λv(δ (v),xu)) ∈W (L,Xu,Xc). For all xu ∈ BXu , we fix λ ′(δ (v′),xu)
to be λv(δ (v),xu). We have that (δ (v′),xu,λ ′(δ (v′),xu)) ∈W (L,Xu,Xc) ↓coneL(ei)∪Xu∪Xc because the tran-
sition relations of G and Gi coincide on coneL(ei)∪Xu∪Xc. The strategy λ ′ ensures that any execution
which starts in W (L,Xu,Xc) ↓coneL(ei)∪Xu∪Xc stays inside W (L,Xu,Xc) ↓coneL(ei)∪Xu∪Xc . Since ei evaluates
to false on W (L,Xu,Xc), these states are not error states in Gi. Therefore λ ′ is winning for all states in
W (L,Xu,Xc) ↓coneL(ei)∪Xu∪Xc . This implies that Wi contains the projection of all winning states of G and
therefore W ⊆Wi ↑L.

4 Compositional Algorithms

In this section, we give three algorithms to solve AIG games compositionally. Each algorithm first solves
the sub-games, and then combines the solutions using different heuristics. We denote by decompose the
procedure that implements the decomposition of ferr described in Section 3, and returns the set of error
functions ei. In all three algorithms, we start by solving each sub-game and obtaining the winning
valuations Wi(L,Xu,Xc), for 1 ≤ i ≤ n. These steps are given in lines 1–3, and are common to ll our
algorithms; we assume that solve_vals raises an exception and terminates the program if the sub-game
cannot be won. Otherwise, we aggregate the results and solve the global game; for the latter, we adopt a
different approach in each of the three algorithms.

SYNT 2015 Informal PRE-proceedings, Page 52

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 9

Algorithm 3: comp_1(〈L,Xu,Xc,(fl)l∈L〉)
1 {e1, . . . ,en} := decompose(ferr); /* Formulas ei(L,Xu,Xc) s.t. ferr ≡

∨
1≤i≤n ei */

2 for 1≤ i≤ n do
3 wi(L,Xu,Xc) := solve_vals(〈coneL(ei),Xu,Xc,(fl)l∈coneL(ei)[ferr← ei]〉)↑L,Xu,Xc ;
4 Λ(L,Xu,Xc) :=

∧
1≤i≤n wi(L,Xu,Xc);

5 for l ∈ coneL(Λ) do f ′l (L,Xu,Xc) := fl(L,Xu,Xc) ⇓ Λ(L,Xu,Xc) ;
6 return solve_vals(〈coneL(Λ),Xu,Xc,(f ′l)l∈coneL(Λ)〉[f ′err←¬Λ])↑L,Xu,Xc ;

4.1 Global aggregation

In Algorithm 3, we start by computing the intersection of the winning valuations: Λ =
∧

1≤i≤nWi. In fact,
any valuation that is not in Λ is losing in one of the sub-games; thus in the global game. Conversely, a
strategy that stays in Λ is winning for each sub-game. Therefore, we solve the global game with the new
safety objective of avoiding ¬Λ. Before solving the global game, the algorithm attempts to reduce the
size of the transition relations by virtue of Lemma 1.

Theorem 1. Algorithm 3 computes the winning valuations of the given AIG game.

Proof. We prove first that W ⊆Λ (that is for all valuation v, W (v)⇒Λ(v)). Since ¬ei⊇W (L,Xu,Xc), we
get – by Lem. 1 – that each wi(L,Xu,Xc) is Wi ↑L where Wi is the winning valuations of the sub-game Gi.
If q 6∈ Λ(L,Xu,Xc), there is a sub-game Gi such that πi(q) is not winning. By Lem. 2, this implies that q
is not winning in G, hence q 6∈W (L,Xu,Xc).

From Lem. 1 it then follows that solve_vals(G) = solve_vals(G′) ↑L and therefore the algorithm
computes the correct result.

4.2 Incremental aggregation

Algorithm 4: comp_2(〈L,Xu,Xc,(fl)l∈L〉,α,β ,γ)
1 {e1, . . . ,en} := decompose(ferr); /* Formulas ei(L,Xu,Xc) s.t. ferr ≡

∨
1≤i≤n ei */

2 for 1≤ i≤ n do
3 wi(L,Xu,Xc) := solve_vals(〈coneL(ei),Xu,Xc,(fl)l∈coneL(ei)[ferr← ei]〉)↑L,Xu,Xc ;
4 E := {wi | 1≤ i≤ n};
5 while |E|> 1 do

6

(r,s) := argmax(i, j)∈|E|2:i6= j {α ·bddsize(¬(wi∧w j))

+β |coneL(wi)∩coneL(w j)|
+γ|coneL(wi)∪coneL(w j)|};

7 for l ∈ coneL(wr ∧ws) do f ′l (L,Xu,Xc) := fl(L,Xu,Xc) ⇓ (wr ∧ws) ;
8 w(L,Xu,Xc) := solve_vals(〈coneL(wr ∧ws),Xu,Xc,(f ′l)l∈coneL(wr∧ws)〉[ferr←¬wr ∨¬ws])↑L,Xu,Xc ;
9 Remove wr,ws and add w to E;

10 return last w(L,Xu,Xc) ∈ E;

In Algorithm 4, we aggregate the results of the sub-games incrementally: given the list of winning
valuations wi for the sub-games, at each iteration, we choose and remove two sub-games i and j, solve
their conjunction (as in Algorithm 3, with error function ¬(wi∧w j)), and add the newly obtained winning
valuations back in the list. To choose the sub-games, we use the following heuristics; we assign a score to
each pair of sub-games based on the size of the BDD of the error function ¬(wi∧w j), and on the number

SYNT 2015 Informal PRE-proceedings, Page 53

10 Compositional Algorithms for Succinct Safety Games

of shared latches, and the number of the latches that appear in either of the sub-games. Intuitively, we
prefer to work with small BDDs, and to merge sub-games that share a lot of latches, while yielding a
small number of total latches. We thus use a linear combination at line 6 to choose the best scoring pair.
In our experiments, we used α =−2,β = 1,γ =−1.

Theorem 2. Algorithm 4 computes the winning valuations of the given AIG game.

Proof. Let us denote by wi
1, . . . ,w

i
ni

the content of E at the beginning of iteration i. We define a function
F from winning valuations wi

j to subsets of {1, . . . ,n}. Intuitively, F(wi
j) is the set of sub-games that

were solved to obtain wi
j. For instance, at the first iteration, if sub-games r,s are combined – and the

result, w, is added to E – then we get F(w) = {r,s}. For convenience, we assume that w is appended at
the end of the sequence wi

1, . . . ,w
i
ni

at line 9.
We proceed by induction on i to define F . Initially F(w1

i) = {i} for all 1 ≤ i ≤ n. For i > 1, for
all j 6= r,s, the element wi

j remains in the list so F is already defined on wi
j. For the newly element wi

ni

we let F(wi
ni
) = F(wi−1

r)∪F(wi−1
s).

We claim that at any iteration i, wi
j is the winning valuations of the game whose error function is the

disjunction of the negation of the winning valuations of the sub-games in F(wi
j). More precisely,

wi
j = solve_vals(〈L,Xu,Xc,(fl)l∈L〉[ferr←

∨

k∈F(wi
j)

ek]).

The correctness of the algorithm will follow since the sets F(·) are merged at each iteration, and the
algorithm always stops with |E|= 1 and F(w) = {1, . . . ,n}.

The condition holds initially as shown in Theorem 1. Let i > 1. As shown in Lem. 1, the generalized
cofactor operation applied before the call to solve does not affect the returned set. Let us denote Er =∨

k∈F(wi−1
r) ek and Es =

∨
k∈F(wi−1

s) es. Let us write E = Er ∨Es. We have Er ⇒ ¬wr by induction, and
similarly Es⇒¬ws; thus E ⇒¬wr∨¬ws. Moreover, for any q(L,Xu) if the controller plays strategy xu ∈
BXc with¬wr(q,xu), or¬ws(q,xu), then he loses for the error function defined by E . In other terms, ¬wr∨
¬ws is a subset of losing valuations for error function E , and contains E , the set of states losing in one
step. It follows that w(L,Xu,Xc) computed at step 8 is the winning valuations for the error function E .

4.3 Back-and-forth

In Algorithm 5, we interleave the analysis of the global game (with objective Λ) and the analysis of
the sub-games. At each iteration, we extend the losing states u(L) by one step, by applying once the
upre operator. We then consider each sub-game, and check whether the new set u′(L) of losing states
(projected on the sub-game), changes the local winning states. Here, pi(L) is this projection on the local
state-space of sub-game i. We update the strategies λi of the sub-games when necessary, and restart until
stabilization. Because analyzing the sub-games is often more efficient than analyzing the global game,
this algorithm improves over Algorithm 3 in some cases (see the experiments’ section). A similar idea
was used in [9] for the problem of synthesis from LTL specifications.

Theorem 3. Algorithm 5 computes the winning valuations of the given AIG game.

Proof. Let W (L) denote the set of winning states of the game G. We consider the following invariant.

∀i ∈ {1, . . . ,n},W (L)⊆ si(L),
err⊆ u′(L)⊆ ¬W (L).

(2)

SYNT 2015 Informal PRE-proceedings, Page 54

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 11

Algorithm 5: comp_3(〈L,Xu,Xc,(fl)l∈L〉)
1 {e1, . . . ,en} := decompose(ferr); /* Formulas ei(L,Xu,Xc) s.t. ferr ≡

∨
1≤i≤n ei */

2 for 1≤ i≤ n do
3 wi(L,Xu,Xc) := solve_vals(〈coneL(ei),Xu,Xc,(fl)l∈coneL(ei)[ferr← ei]〉)↑L,Xu,Xc ;
4 si(L) := solve_states(〈coneL(ei),Xu,Xc,(fl)l∈coneL(ei)[ferr← ei]〉)↑L;
5 Λ(L,Xu,Xc) :=

∧
1≤i≤n wi(L,Xu,Xc);

6 G′ := 〈coneL(Λ),Xu,Xc,(fl)l∈coneL(Λ)〉[ferr←¬Λ];
7 u(L) := 0;
8 u′(L) :=

∨
1≤i≤n¬si(L); /* The union of all the losing states */

9 while u 6= u′ do
10 u(L) := u′(L);
11 u′(L) := u(L)∨upreG′(u);
12 for 1≤ i≤ n do
13 pi(L) := ∀L\coneL(ei) : u′(L); /* Universal projection of latches not present in

local sub-game */
14 if pi∧ si 6= 0 then
15 for l ∈ coneL(pi) do f ′l (L,Xu,Xc) := fl(L,Xu,Xc) ⇓ ¬pi(L) ;
16 si(L) := solve_states(〈Xu,Xc,coneL(pi),(f ′l)l∈coneL(pi)〉[ferr← pi ↑L,Xu,Xc])↑L;
17 u′(L) := u′(L)∨¬∧1≤i≤n(si(L) ↓L);
18 return ¬u(L);

In words, in every iteration, u′(L) is contained in the losing valuations of the global game, and each si(L)
contains the winning valuations of Gi.

Initially, by Algorithm 3, W ⊆ si(L) for all i, and we have err ⊆ ¬si(L). So err ⊆ ¬∧i si(L). Thus,
err⊆ u′(L). Moreover, since ∨i¬si(L)⊆ ¬W , we have that u′(L)⊆ ¬W .

Consider now iteration i > 1, and assume the invariant holds at the beginning. u′(L) is updated at
line 11. The property err ⊆ u′(L) ⊆ ¬W still holds by the definition of the upre operation, and by the
fact that the set u′ can only grow at this step (because of the union).

We consider now the for loop, and show that W ⊆ si after each iteration. Assume pi ∩ si 6= /0 since
otherwise si is not modified. By definition pi ⊆ u′ thus pi ⊆¬W . Then the solve function computes the
set of states from which the controller can avoid err∨ pi. Since err∨ pi ⊆ ¬W , we get that si ⊆W . It
follows that ¬∧n

i=1 si ⊆ ¬W . Thus, at the last line of the while loop, we have err⊆ u′(L)⊆ ¬W .
Now, line 11 ensures that after iteration i, u′(L) contains the i-th iteration of the upre fixpoint com-

putation. Hence, the test u 6= u′ of the while loop ensures that the while loop terminates with u(L) being
equal to upre∗(G).

5 Experiments

We implemented our algorithms in the synthesis tool AbsSynthe [3]. We compare their running times
against the most efficient algorithm of AbsSynthe that implements a backward fixpoint algorithm.2 This
algorithm was the winner of the 2014 Synthesis Competition synthesis track, and the winner of the
realizability track at the same competition implemented a similar backward algorithm.

Let us first illustrate the advantage of the compositional approach with two examples. In the first

2The new version of AbsSynthe with the implementation of the compositional algorithms can be fetched from https:
//github.com/gaperez64/abssynthe.

SYNT 2015 Informal PRE-proceedings, Page 55

12 Compositional Algorithms for Succinct Safety Games

set of benchmarks we consider, the controller is to compute the multiplication of two Boolean matrices
given as (uncontrollable) input. Since each cell of the resulting matrix depends only on a subset of inputs,
namely, on one row and one column, these benchmarks are well adapted for compositional algorithms.
Figure 3 compares the performances of the classical algorithm with Algorithm 3. The classical algorithm
was able to solve 36 instances, while the compositional algorithm solved all 75 instances and was sig-
nificantly faster. The x-axis shows the number of solved benchmarks within the running time given by
the y-axis. The second set of benchmarks we consider consist in a washing system made of n tanks. An
uncontrollable input can request at any time the tank to be activated, at which point the controller should
fill the tank with water, and empty it after at least k steps. Moreover, some subsets of tanks cannot be
filled at the same time, and a light is to be on if at least one tank is filled with water. Note that the control
strategy for each tank is not independent due to mutual exclusion constraints, and to the light indicator.
Algorithm 3 was also more efficient on these benchmarks, as shown on Fig. 4. The classical algorithm
solved 132 benchmarks out of 256, while Alg. 3 solved 152.

Figure 3: Performances for 75 Boolean matrix multi-
plication benchmarks for Algorithm 3 and the classical
algorithm.

Figure 4: Peformances for the 256 washing system
benchmarks for Algorithm 3 and the classical algo-
rithm.

We now evaluate all three compositional algorithms and compare them with the classical algorithm
on a large benchmark set of 674 benchmarks. 562 of these benchmarks were provided for the 2014 Syn-
thesis Competition and 105 have been generated by the new version of LTL2AIG [11] which translates
conjunctions of LTL specifications into AIG.3 Among those benchmarks, 351 are decomposable by our
static analysis into at least 2 smaller sub-games. More specifically, the average number of sub-games our
decomposition algorithm outputs is 29; the median is 21.

In general, the performances of the three compositional algorithms can differ, but they are comple-
mentary. Figures 5 to 8 show the performances of the algorithms on several sets of benchmarks. All
benchmarks in Figures 5 and 6 are decomposable. Figure 7 shows all the benchmarks we used and
Figure 8 shows only those benchmarks from last year’s synthesis competition which were based on
specifications of the AMBA arbiter.

Conclusion. Even if AIG synthesis problems are monolithic, the experiments show that our composi-
tional approach was able to solve problems that can not be handled by the monolithic backward algo-
rithm; our compositional algorithms are sometimes much more efficient. There are also examples that

3A collection of benchmarks, including the ones mentioned here, can be fetched from https://github.com/gaperez64/
bench-syntcomp14 and https://github.com/gaperez64/bench-ulb-syntcomp15.

SYNT 2015 Informal PRE-proceedings, Page 56

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 13

can be decomposed but which are not solved more efficiently by the compositional algorithms. So, it is
often a good idea to apply all the algorithms in parallel. This portfolio approach improved the perfor-
mance and was able to solve 20 benchmarks that could not be solved by the fastest algorithms of last
year’s reactive synthesis competition.

Figure 5: Performances for 68 load-balancing benchmarks

translated from LTL. The classical algorithm solves 38 bench-

marks, comp.1 44, comp.2 45, comp.3 45. In total there are

46 benchmarks that can be solved. The largest example that

can be solved has 4005 latches and the smallest example that

cannot be solved has 670 latches.

Figure 6: Performances for 46 generalized buffer bench-

marks translated from LTL. The classical algorithm solves 6

benchmarks, comp.1 10, comp.2 15, comp.3 11. In total there

are 18 benchmarks that can be solved. The largest example

that can be solved has 22662 latches and the smallest example

that cannot be solved has 590 latches.

Figure 7: Performances for the 674 benchmarks. The clas-

sical algorithm was able to solve 572 benchmarks. 20 more

benchmarks were solved by one of the three compositional al-

gorithms.

Figure 8: Performances for 108 AMBA benchmarks. The

classical algorithm was able to solve 106 benchmarks, comp.1

84, comp.2 76, comp.3 93.

References

[1] Henrik Reif Andersen (1997): An introduction to binary decision diagrams. Technical Report, Course Notes
on the WWW.

[2] Krzysztof R. Apt & Erich Grädel (2011): Lectures in game theory for computer scientists. Cambridge
University Press.

SYNT 2015 Informal PRE-proceedings, Page 57

14 Compositional Algorithms for Succinct Safety Games

[3] Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin & Ocan Sankur (2014): AbsSynthe: abstract
synthesis from succinct safety specifications. In: Proceedings 3rd Workshop on Synthesis, SYNT 2014,
Vienna, Austria, July 23-24, 2014., pp. 100–116, doi:10.4204/EPTCS.157.11. Available at http://dx.
doi.org/10.4204/EPTCS.157.11.

[4] Randal E. Bryant (1986): Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on 100(8), pp. 677–691, doi:10.1109/TC.1986.1676819.

[5] Jerry Burch, Edmund M Clarke & David Long (1991): Symbolic model checking with partitioned transition
relations. Computer Science Department, p. 435.

[6] Edmund M. Clarke, Orna Grumberg & Doron Peled (2001): Model checking. MIT Press. Available at
http://books.google.de/books?id=Nmc4wEaLXFEC.

[7] E. Allen Emerson & Charanjit S. Jutla (1991): Tree automata, mu-calculus and determinacy. In: FOCS,
IEEE, pp. 368–377, doi:10.1109/SFCS.1991.185392.

[8] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2010): Compositional Algorithms for LTL Synthe-
sis. In: Automated Technology for Verification and Analysis - 8th International Symposium, ATVA 2010,
Singapore, September 21-24, 2010. Proceedings, Lecture Notes in Computer Science 6252, Springer, pp.
112–127.

[9] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2010): Compositional Algorithms for LTL Synthe-
sis. In: Automated Technology for Verification and Analysis - 8th International Symposium, ATVA 2010,
Singapore, September 21-24, 2010. Proceedings, pp. 112–127, doi:10.1007/978-3-642-15643-4_10.

[10] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2011): Antichains and compositional algorithms
for LTL synthesis. Formal Methods in System Design 39(3), pp. 261–296, doi:10.1007/s10703-011-0115-3.
Available at http://dx.doi.org/10.1007/s10703-011-0115-3.

[11] Guillermo A. Pérez: LTL2AIG. https://github.com/gaperez64/acacia_ltl2aig.

[12] Nir Piterman, Amir Pnueli & Yaniv Sa’ar (2006): Synthesis of reactive (1) designs. In: Verification, Model
Checking, and Abstract Interpretation, Springer, pp. 364–380.

[13] Thomas R. Shiple, Ramin Hojati, Alberto L. Sangiovanni-Vincentelli & Robert K. Brayton (1994): Heuristic
minimization of BDDs using don’t cares. In: Proceedings of the 31st annual Design Automation Conference,
ACM, pp. 225–231.

[14] Fabio Somenzi (1999): Binary Decision Diagrams. In: Calculational system design, 173, IOS Press, p. 303.

[15] Alfred Tarski et al. (1955): A lattice-theoretical fixpoint theorem and its applications. Pacific journal of
Mathematics 5(2), pp. 285–309, doi:10.2140/pjm.1955.5.285.

[16] H.J. Touti, H. Savoj, B. Lin, R.K. Brayton & A. Sangiovanni-Vincentelli (1990): Implicit enumeration of
finite state machines using bdd’s. In: IEEE Int. Conference on CAD.

[17] Chao Wang, Gary D Hachtel & Fabio Somenzi (2003): The compositional far side of image computation. In:
Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, IEEE Computer
Society, p. 334.

A Repeating the experiments

The new version of AbsSynthe with the implementation of the compositional algorithms can be fetched
from https://github.com/gaperez64/abssynthe.

B Correctness of the decomposition algorithm

We now give a more formal explanation on how our decomposition procedure works. For two nodes
n,n′ of an AIG, we will write n ≡ n′ if they define the same Boolean function. We will also apply

SYNT 2015 Informal PRE-proceedings, Page 58

R. Brenguier, G.A. Pérez, J.-F. Raskin & O. Sankur 15

Boolean operators on nodes (e.g. n∨n′) which means that they are applied on the corresponding Boolean
functions.

In an AIG each fl is given by a (possibly inverted) edge from a node nl . We first explore the graph
until finding a negation. This is exactly what Algorithm 1 achieves. Formally, given a node n or an edge
e, we define set of nodes N(n), N(e), M(n) and M(e) recursively as follows:

• if n is a terminal node then N(n) = {n} and M(n) =∅;

• if e is a regular edge from a node n then N(e) = N(n) and M(e) = M(n);

• if e is an inverted edge (a NOT gate) from a node n then N(e) =∅ and M(e) = {n};
• otherwise n is a two-input node (an AND gate) with two incident edges e1 and e2, then N(n) =

N(e1)∪N(e2) and M(n) = M(e1)∪M(e2).

Lemma 3. For every node l, fl ≡
∧

n∈N(l) n∧∧m∈M(l)¬m.

Proof. This proof is by induction. If n is a terminal node then the property is obvious. If e is a regular
edge, the property follows by induction. If e is a negated edge to n, then its semantic is the negation of
n: fe ≡ ¬ fn and the property follows. Now if n is an AND gate of two edges e1 and e2, its semantic is
the conjunction: fn ≡ fe1 ∧ fe2 . By induction, we have that fei ≡

∧
n∈N(ei) n∧∧m∈M(ei)¬m and therefore

fn ≡
∧

n∈N(e1)∪N(e2) n∧∧m∈M(e1)∪M(e2)¬m and the property follows.

If M(err) is empty, or all its nodes are terminal (i.e. inputs or latches), there is no decomposition.
Otherwise, we can choose an AND gate m0 ∈ M(err). We then define decompose(fl) as {ep | p ∈
N(m0)}∪{e¬p | p∈M(m0)}where ep =¬p∧∧n∈N(err) n∧∧m∈M(err)\{m0}¬m. This is the decomposition
given by Algorithm 2.

Lemma 4. For every node l, fl ≡
∨

ei∈decompose(fl) ei.

Proof. Thanks to Lem. 3, fl ≡
∧

n∈N(l) n∧∧m∈M(l)\{m0}¬m∧¬m0 and¬ fm0 ≡
∨

p∈N(m0)¬p∨∨p′∈M(m0) p′.
We then rewrite fl by distributing this disjunction and obtain fl ≡

∨
p∈N(m0)

(
¬p∧∧n∈N n∧∧m∈M\{m0}¬m

)
∨∨

p′∈M(m0)

(
p′∧∧n∈N n∧∧m∈M\{m0}¬m

)
. This yields the required decomposition.

SYNT 2015 Informal PRE-proceedings, Page 59

To appear in EPTCS.

Specification Format for Reactive Synthesis Problems∗

Ayrat Khalimov
Graz University of Technology, Austria

Automatic synthesis from a given specification automatically constructs correct implementation.
This frees the user from the mundane implementation work, but still requires the specification. But
is specifying easier than implementing? In this paper, we propose a user-friendly format to ease
the specification work, in particularly, that of specifying partial implementations. Also, we provide
scripts to convert specifications in the new format into the SYNTCOMP format, thus benefiting from
state of the art synthesizers.

1 Introduction

Specifying reactive synthesis tasks is not easy. First, writing non-trivial specifications in e.g. linear
temporal logic (LTL) requires experience, and even an experienced user of LTL may notice that some
properties are easier to implement oneself than to specify. Thus, it is desirable to be able to mix imper-
ative and declarative paradigms when specifying reactive synthesis tasks, which makes a call for a new
convenient specification format.

The full set of features of the new specification format might include:

1. Modularity. A synthesis task may require to synthesize several communicating modules where
each module has its own properties. Thus, the new format should allow for specifying module
interfaces and connections between them. These interfaces specify the amount of information
each module knows about others.

2. Imperative and declarative. Some modules may already be given to the user, and some modules
or parts of it may be easier to implement than to specify. Thus, the new format should allow for
specifying module implementations.

3. Conversion to the SYNTCOMP format. The SYNTCOMP format [9] was recently proposed as
the common ground format for reactive synthesis competitions, and at least four synthesizers were
competing in 2014. Thus, to let the user to benefit from state of the art synthesizers, the new format
should be convertible into the SYNTCOMP format.

4. Property language agnostic. The new format should allow the user to choose the best suited lan-
guage for writing properties: linear temporal logic, linear dynamic logic [14], regular expressions,
automata, etc.

These features requirements are our subjective suggestions and arise from the domain of synthesis of
reactive systems that usually represent some hardware. The features certainly depend on the synthesis
domain: for example, in the case of fault-tolerant algorithms the user also needs to specify the ratio of
faulty to normal processes, the type of faults, etc.

In this the paper we:

• propose a specification format for reactive synthesis tasks, and

∗This work was supported by the Austrian Science Fund via project RiSE (S11406).

SYNT 2015 Informal PRE-proceedings, Page 60

2 Specification Format for Reactive Synthesis Problems

• provide scripts to convert from the new format into the SYNTCOMP format.
The new format can be extended to support features (1), (2), (3), and (4), but the current version

has limitations. Some of the limitations are: (i) the user can separate the system into modules, but each
module has the full information about others, (ii) only deterministic Büchi automata are allowed for
specifying properties, and (iii) assumptions must be safety properties.

The new format is based on the SMV format [7] – it is convenient for describing hardware systems:
it allows the user to define finite state machines that operate on variables of enumeration and range types,
and to separate the system into modules, etc. Another advantage of using the SMV format as the starting
point is that there is a solid support of the SMV format in the AIGER distribution [1], which greatly
simplifies the task of the development of the conversion scripts.

Outline. We describe the new format and its restrictions in Section 2. Section 3 describes the con-
version scripts and also introduces the SYNTCOMP format extended with liveness which is one of the
supported target formats (alongside the standard SYNTCOMP format). Section 4 illustrates the use of
the format and of the scripts – we write the specification that describes the task: when given an imple-
mentation of a Huffman decoder for the English alphabet, synthesize an encoder for it. Section 5 points
to other possible ways of writing specifications and converting them into the SYNTCOMP format. And
we conclude in Section 6.

2 Specification Format

We assume that the reader is familiar with the SMV (cf. [7]) and the SYNTCOMP [9] formats. We
introduce a new section into the SMV format, and the comments of special form that allow for spec-
ifying synthesis problems. The specification in the extended SMV format is then translated into the
SYNTCOMP format.

An example of the extended SMV format is shown in Listing 1. 1

As in the usual SMV format, it consists of modules and the main module. In the main module,
variables to be controlled by the system are marked with the comment ‘--controllable’ (Mealy-type).
The new sections ENV AUTOMATON SPEC and SYS AUTOMATON SPEC contain definitions of the
assumptions and guarantees respectively. Every assumption and guarantee in the corresponding sections
is expressed by a file path to a Büchi automaton in the GOAL format [13]. A file path can be preceded
by ‘!’ to indicate that the property is the negation of the automaton. These property automata will be
converted into SMV modules.

Restrictions

The framework we describe in Section 3 converts a given specification in the extended SMV format into
a deterministic game in the AIGER circuit format. AIGER circuits are inherently deterministic and so
should be automata used in sections SYS AUTOMATON SPEC and ENV AUTOMATON SPEC. We
require that:
• guarantees automata are deterministic (or determinizable),

• assumptions automata represent safety properties.
These conditions are sufficient (but not necessary) for the game to be deterministic, and are required by
the conversion script spec 2 aag.py described in Section 3.

1The format is under active development and may slightly differ from the one described here.

SYNT 2015 Informal PRE-proceedings, Page 61

A. Khalimov 3

Listing 1: Format structure (special elements are in blue color).
MODULE helper1(input1 ,input2) //we can define and use SMV modules as usually

VAR

state: 0..100;

DEFINE

reached42 := state =42;

...

MODULE main // module ‘main ’ contains a specification

VAR

CPUread: boolean; // only boolean is allowed

VAR --controllable

valueOut: boolean; // only boolean is allowed

VAR

h: helper1(readA , valueOut); // we can instantiate modules as usually

DEFINE

// signals defined in the module can be referred to in the property automata

a := TRUE;

b := FALSE;

writtenA := CPUwrite & valueIn=a & done;

readA := CPUread & valueOut=a & done;

is42 := h.reached42;

...

// thus we can use variables ‘is42 ’, ‘readA ’, ‘writtenA ’ in property automata below

SYS_AUTOMATON _SPEC // guarantees in the GOAL automata format

guarantee1.gff;

!guarantee2.gff; // ‘!’ signals to negate the automaton

ENV_AUTOMATON _SPEC // assumptions in the GOAL automata format

assumption1.gff;

!assumption2.gff;

...

3 Conversion into the SYNTCOMP Format

We will convert specifications in the extended SMV format into standard and extended SYNTCOMP
formats. Specifications in the standard SYNTCOMP can be given to any synthesis tool from the SYNT-
COMP competition. Specification in the extended format can either be converted into the standard
SYNTCOMP format using justice 2 safety.py, or can be given to our synthesizer aisy.py that supports it.

The scripts are available at https://bitbucket.org/art_haali/spec-framework.

Standard and extended SYNTCOMP

In this section we remind what the standard SYNTCOMP format is and then introduce the extension.
The standard SYNTCOMP is a circuit in the old AIGER format [2] with special comments that allow

for specifying controllable (by the system) and uncontrollable (thus controllable by the environment)
signals. The following figure shows the standard SYNTCOMP format [9] (ignore the dotted arrows –
they are part of the extended format):

The goal is to synthesize the controllable signals (i.e., replace them with combinational circuits that
as inputs use the memory and uncontrollable signals) such that the output bad never raises. Thus, the

SYNT 2015 Informal PRE-proceedings, Page 62

4 Specification Format for Reactive Synthesis Problems

(a) SYNTCOMP specification (b) SYNTCOMP model

semantics of the standard SYNTCOMP is G¬bad, which allows for specifying safety properties.
The natural extension is to allow liveness properties. This is what the extended SYNTCOMP format

proposes. It also uses signal inv though it does not add the expressiveness. These signals are ‘introduced’
using the standard capabilities of the new AIGER format [4] (which allows for specifying ‘bad’ signals,
‘invariant’ signals, and ‘justice’ signals). The extended SYNTCOMP is shown on the same figure as the
standard one if you take into account the dotted signals.

The semantics of the extended SYNTCOMP format is

(¬bad W¬inv)∧ (G inv→ GF just) (1)

Note: the meaning of the signal just is reversed compared to the new AIGER format [4]: in that case a
witness liveness trace satisfies G inv∧GF just, while in our case it satisfies G inv∧¬GF just. We reversed
the meaning of the signal just to be able to specify properties like G(r→ Fg) (“every request is granted”)
or GF¬r (“request is lowered infinitely often”). Such properties can be represented by deterministic
Büchi automata but not by deterministic co-Büchi automata. And we need specification automata to be
deterministic to be able to convert them into inherently deterministic AIGER circuits.

Converting specifications into SYNTCOMP

The figure shows how we convert a given specification into SYNTCOMP format:

The main script is spec 2 aag.py:

1. Given a specification in extended SMV format (Section 2), we first convert all the automata in the
GOAL format into SMV modules. At this step we might need to complement or determinize a
given automaton – this is done using GOAL. Then we parse the result and convert it into an SMV

SYNT 2015 Informal PRE-proceedings, Page 63

A. Khalimov 5

module. Such SMV module contains two special signals: bad and f air. In such SMV module,
signal f air is risen when we visit an accepting state of the automaton, and bad is risen when we
visit a non-accepting state with a self-loop labelled True.

2. The main conversion work – from the SMV format into the extended SYNTCOMP format – is
done with scripts smvflatten and svmtoaig from the AIGER distribution [1]. The result of this
step is an AIGER file that may contain invariant and justice signals, which is not supported by
the current SYNTCOMP format. Thus the current synthesis tools from the competition cannot be
used directly.

3. The file in the extended SYNTCOMP format is converted into the standard version (with the single
output) using justice 2 safety.py. The conversion requires input positive integer k and is standard:
GF just is replaced with G(just ∨X just ∨ ...Xk just), where Xk means k repetitions of X.

The result of this conversion is specification in either the standard or extended SYNTCOMP formats,
and can be given to a synthesizer.

Converting models into AIGER

After the synthesizer produces a model, it can be turned into a benchmark in the standard AIGER format
and then be fed to a model checker (e.g., one from the HWMCC competition):

If the input synthesis specification is in the standard SYNTCOMP format, then the model is also in
the standard AIGER format and can be fed to a model checker directly. But in the case of the extended
SYNTCOMP format we need to translate. Recall the semantics of our extended format (Equation 1):
in our case a trace violating a liveness property would satisfy ¬GF just, while the AIGER format has
GF just ′. Thus, we convert the model into a model with signal just ′ such that: if there is a trace that
satisfies GF just ′ then it satisfies FG¬ just. If denote the new model by M′, and the original one by M,
then: M′ |= EFG just ′ → M 6|= AGF just. The script synt 2 hwmcc.py does this by introducing a new
input aux and attaching the automaton as shown below:

4 Example: Synthesizing a Huffman Encoder

This section demonstrates the use of the format and the framework. We implemented a simple synthesizer
that solves Büchi games with invariants and safety objectives given in the extended SYNTCOMP format

SYNT 2015 Informal PRE-proceedings, Page 64

6 Specification Format for Reactive Synthesis Problems

described in Section 2. The results of the synthesis are then translated into the HWMCC format using
script synt 2 hwmcc.py, and then model checked with IIMC [5].

We use the Huffman coding [8] to encode 26 English letters A...Z and the space symbol into bit
words of variable length (27 symbols in total). Let us assume that a Huffman decoder that decodes a
stream of bits into letters is given 2 — the goal is to synthesize an encoder that works with the decoder.

The figure below shows the structure of the SMV specification of the synthesis task:

The dotted module (encoder) is to be synthesized, namely signals cipher and done (these signals
are marked ‘controllable’ in the specification). The input is dataIn and has five bits of width, which
is enough to encode 27 symbol: we use numbers 1..27 for encoding the symbols. The outputs of the
encoder are boolean signals cipher and done; the intended meaning of done is “the last bit of the cipher
is being sent now”. The signal cipher is read by the decoder, which decodes the cipher and outputs it over
dataOut; on successful decoding dataOut lasts for one tick, after which it is 0 again. The data-signal
dataOut is then fed to the FIFO module FIFOdec, and FIFOenc takes as input dataIn. FIFOs values are
dequeued whenever they are not empty, and their values are compared. FIFOenc is enqueued whenever
done is high, and FIFOdec – whenever dataOut encodes a letter. A FIFO gets blocked if we enqueue
and not dequeue, and the FIFO is not empty currently (i.e., if enq∧¬deq∧ empty holds).

All modules except dotted module encoder are given: FIFOs we coded manually (of size 1); the
decoder is taken from the distribution of the model checker VIS [6].

In words, the specification is:

A1. assumption: “input dataIn is within range 1..27”

A2. assumption: “dataIn does not change until and including the moment when done is high”

G1. G(done→ Xenqdec)
3

G2. G¬diff, i.e., if FIFOs are not empty, then they contain the same data

G3. liveness guarantee: GFdone

The specification in the SMV format is translated into the SYNTCOMP formats (standard safety and
extended liveness) as described in Section 2. The semantics is as given in Equation 1 where: bad is the
violation of any of the safety guarantees, inv is the truth of (A1) and (A2) so far, and just = done.

2Thus the decoder already has the letter frequencies built in.
3Strictly speaking this guarantee is not needed for the correct synthesis of the encoder, but without it the meaning of done

may be different from the intended one (“the last cipher bit is being transferred”).

SYNT 2015 Informal PRE-proceedings, Page 65

A. Khalimov 7

Given the specification in the extended SYNTCOMP format, the synthesizer aisy.py synthesized the
model in ≈ 2 minutes; the model has ≈ 130k new AND-gates 4. The cipher synthesized is as expected
(coincides with that of the Huffman decoder).

If we translate the specification into the k-safety variant with k = 10 (the minimal realizable), then
aisy.py needs ≈ 4 minutes for the synthesis and the model has ≈ 120k AND-gates. We do not claim
that in terms of efficiency the liveness specifications are superior to their safety variant – for this a more
thorough research is needed. But the translation of liveness into safety requires a value of k as input: here
we provided it manually, while in the general case its upper bound should be restricted and the permitted
values should be iterated in some way.

Some final notes on the example. Initially, FIFOs implementations were non blocking, which permits
the synthesizer to produce a cipher for a letter that is prefixed with ciphers of other letters (this version
of the specification would compare only the last decoded letter). Also, with non-blocking FIFOs and
without guarantee G2, the synthesizer produced a cipher that utilized the overflow in the state variable of
the decoder. Hence in the general case the synthesized cipher may depend on in the implementation of
the decoder and will not work with other implementations.

The benchmarks are available as a part of the conversion scripts distribution; aisy.py is available at
https://bitbucket.org/art_haali/aisy.

5 Related Work

There are scripts and ways to create specification circuits in the SYNTCOMP format:
The script ltl2aig [10] takes as input specification in LTL format and signals partition and converts

it into a circuit in the standard SYNTCOMP format. It does not use tools from the AIGER distribution
[1] and supports all the routines natively. It also converts liveness properties into safety variants in the
standard way. The limitation is that it does not allow the user to provide partial implementations.

The bundle ltl2smv[7] - smvflatten - smvtoaig [3] can translate SMV files with LTL properties
embedded into AIGER format. The idea is:

1. smvflatten accepts a given SMV file with modules and variable types like range and enums, and
translates it into boolean SMV file, preserving the original LTLSPEC section.

2. The result is sent to smvtoaig that translates LTLSPEC section into SMV module using ltl2smv,
then joins the result, and translates it into AIGER circuit.

I.e, it does what we want but in the context of the model checking. For synthesis we also need:

• to provide the signals partition (into controllable and uncontrollable) – a minor issue, and

• to ensure there are no non-deterministic automata and thus no non-deterministic SMV modules
produced at step (2) by ltl2smv. 5 One way to achieve this is to provide a custom implementation
of ltl2smv. In hindsight, I think this might be a good way to go.

Finally, in the work in progress paper [12] the authors target a similar goal of providing a rich specifi-
cation language that benefits from efficient synthesizers. In that work the authors automatically translate
often used LTL patterns into the GR(1) fragment of LTL that has an efficient synthesis algorithm [11].
They do not allow for providing partial implementations.

4Recall that we synthesize a memory-less strategy, thus introduce only new AND-gates and no additional memory.
5This is because we cannot resolve non-determinism by adding the uncontrollable input: the synthesizer is aware of all

circuit’s signals, thus it may wait for the input to raise and then behave accordingly. I.e., we need to ensure that a system
strategy is independent of the auxiliary signal – the partial information, which is not supported by the SYNTCOMP format.

SYNT 2015 Informal PRE-proceedings, Page 66

8 Specification Format for Reactive Synthesis Problems

6 Conclusions

In this paper we proposed a format to ease the specification task that allows the user to provide partial
implementations, and we built the conversion scripts from the new format into the SYNTCOMP format.
Both the specification format and the way we convert into the existing format are subject to discussion:

• Is there a more convenient format of specifications? Is SMV enough or Verilog should be used
instead? Should we support GR(1)? Partial information?

• Is there a simpler way to convert from the new format into the SYNTCOMP format?

Acknowledgements. This paper would not be possible without numerous fruitful discussions with Robert Könighofer,
Roderick Bloem, and Georg Hofferek. Many thanks to reviewers for valuable suggestions.

References
[1] Armin Biere: AIGER format and toolbox. Available at http://fmv.jku.at/aiger/.
[2] Armin Biere: AIGER format version 20070427. Available at http://fmv.jku.at/aiger/

FORMAT-20070427.pdf.
[3] Armin Biere: smvflatten. Available at http://fmv.jku.at/smvflatten/.
[4] Armin Biere, Keijo Heljanko & Siert Wieringa (2011): AIGER 1.9 and Beyond. Available at http://www.

fmv.jku.at/hwmcc11/beyond1.pdf.
[5] Aaron Bradley, Arlen Cox, Michael Dooley, Zyad Hassan, Fabio Somenzi & Yan Zhang: IIMC. Available at

http://ecee.colorado.edu/wpmu/iimc/.
[6] RobertK. Brayton, GaryD. Hachtel, Alberto Sangiovanni-Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-

Tsung Cheng, Stephen Edwards, Sunil Khatri, Yuji Kukimoto, Abelardo Pardo, Shaz Qadeer, RajeevK.
Ranjan, Shaker Sarwary, ThomasR. Staple, Gitanjali Swamy & Tiziano Villa (1996): VIS: A system for
verification and synthesis. In: CAV, LNCS 1102, pp. 428–432, doi:10.1007/3-540-61474-5 95.

[7] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore, Marco Roveri,
Roberto Sebastiani & Armando Tacchella (2002): NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: CAV, LNCS 2404, pp. 359–364, doi:10.1007/3-540-45657-0 29.

[8] D.A. Huffman (1952): A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the
IRE 40(9), pp. 1098–1101, doi:10.1109/JRPROC.1952.273898.

[9] Swen Jacobs (2014): Extended AIGER Format for Synthesis (v0.1).
[10] Guillermo A. Perez: ltl2aig. Available at https://github.com/gaperez64/acacia_ltl2aig.
[11] Nir Piterman, Amir Pnueli & Yaniv Saar (2006): Synthesis of reactive (1) designs. In: Verification, Model

Checking, and Abstract Interpretation, Springer, pp. 364–380.
[12] Jan Oliver Ringert (2015): Extensible Support for Specification Patterns in GR(1) Synthesis (Work in

Progress). Young Researchers’ Conference “Frontiers of Formal Methods”. Available at http://ffm2015.
rwth-aachen.de/proceedings.php.

[13] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu & Wen-Chin Chan (2007): GOAL: A
graphical tool for manipulating Büchi automata and temporal formulae. In: TACAS, Springer, pp. 466–471.

[14] M. Y. Vardi (2011): The rise and fall of linear time logic. 2nd Intl Symp. on Games, Automata, Logics and
Formal Verification.

SYNT 2015 Informal PRE-proceedings, Page 67

To appear in EPTCS. c© X. Huang & R. van der Meyden

The complexity of approximations for epistemic synthesis

Xiaowei Huang
UNSW Australia

Ron van der Meyden
UNSW Australia

Epistemic protocol specifications allow programs, for settings in which multiple agents act with
incomplete information, to be described in terms of how actions are related to what the agents know.
They are a variant of the knowledge-based programs of Fagin et al [Distributed Computing, 1997],
motivated by the complexity of synthesizing implementations in that framework. The paper proposes
an approach to the synthesis of implementations of epistemic protocol specifications, that reduces the
problem of finding an implementation to a sequence of model checking problems in approximations
of the ultimate system being synthesized. A number of ways to construct such approximations is
considered, and these are studied for the complexity of the associated model checking problems.
The outcome of the study is the identification of the best approximations with the property of being
PTIME implementable.

1 Introduction

Knowledge-based programs [9] are an abstract specification format for concurrent systems, in which the
actions of an agent are conditional on formulas of the logic of knowledge [8]. This format allows the
agent to be described in terms of what it must know in order to perform its actions, independently of
how that knowledge is attained or concretely represented by the agent. This leads to implementations
that are optimal in their use of the knowledge implicitly available in an agent’s local state. The approach
has been applied to problems including reliable message transmission [12], atomic commitment [11],
fault-tolerant agreement [6], robot motion planning [4] and cache coherency [1].

The process of going from an abstract knowledge-based program to a concrete implementation is
non-trivial, since it requires reasoning about all the ways that knowledge can be obtained, which can be
quite subtle. Adding to the complexity, there is a circularity in that knowledge determines actions, which
in turn affect the knowledge that an agent has. It is therefore highly desirable to be able to automate
the process of implementation. Unfortunately, this is known to be an inherently complex problem: even
deciding whether an implementation exists is intractable [9].

Sound local proposition epistemic specifications [7] are a generalization of knowledge-based pro-
grams proposed in part due to these complexity problems. These specifications require only sufficient
conditions for knowledge, where knowledge-based programs require necessary and sufficient conditions.
By allowing a larger space of potential implementations, this variant ensures that there always exists an
implementation. However, some of these implementations are so trivial as to be uninteresting. In prac-
tice, one wants implementations in which agents make good use of their knowledge, so that the condi-
tions under which they act closely approximate the necessary and sufficient conditions for knowledge.
To date, a systematic approach to the identification of good implementations, and of automating the con-
struction of such good implementations, has not been identified. This is the problem we address in the
present paper. Ultimately, we seek an automated approach that is implementable in a way that scales
to handling realistic examples. In this paper, we use a CTL basis for specifications, and use PTIME
complexity of an associated model checking problem in an explicit state representation as a proxy for
practical implementability.

SYNT 2015 Informal PRE-proceedings, Page 68

2 The complexity of approximations for epistemic synthesis

The contributions of the paper are two-fold: first, we present a general approach to the identification
of good implementations, that extends the notion of sound local proposition epistemic specification by
ordering the knowledge conditions to be synthesized, and then defining a way to construct implemen-
tations using a sequence of approximations to the final synthesized system, in which implementation
choices for earlier knowledge conditions are fed back to improve the quality of approximation used to
compute later implementation choices. This gives an intuitive approach to the construction of implemen-
tations, which we show by example to address some unintuitive aspects of the original knowledge-based
program semantics. The approach is parametric in a choice of approximation scheme.

Second, we consider a range of possibilities for the approximation scheme to be used in the above
ordered semantics, and evaluate the complexity of the synthesis computations associated with each ap-
proximation. The analysis leads to the identification of two orthogonal approximations that are optimal
in their closeness to a knowledge-based program semantics, while remaining PTIME computable. This
identifies the best prospects for future work on synthesis implementations.

The paper is structured as follows. Section 2 recalls basic definitions of temporal epistemic logic.
Section 3 defines epistemic protocol specifications. In Section 4 we define the ordered semantics ap-
proximation approach for identification of good implementations. Section 5 defines a range of possible
approximation schemes, which are then analyzed for complexity in Section 6. We discuss related work
in Section 7 and conclude with a discussion of future work in Section 8.

2 A Semantic model for Knowledge and Time

In this section we lay out a general logical framework for agent knowledge, and describe how knowledge
arises for agents that execute a concrete protocol in the context of some environment.

Let Prop be a finite set of atomic propositions and Ags be a finite set of agents. The language
CTL∗K(Prop,Ags) has the syntax:

φ ::= p | ¬φ | φ1∨φ2 | Xφ | (φ1Uφ2) | Aφ | Kiφ

where p ∈ Prop and i ∈ Ags. This is CTL∗ plus the construct Kiφ, which says that agent i knows that φ
holds. We freely use standard operators that are definable in terms of the above, specifically Fφ= trueUφ,
Gφ=¬F¬φ, φ1Rφ2 =¬((¬φ1)U(¬φ2)), Eφ=¬A¬φ. Our focus in this paper is on the fragment CTLK, in
which the branching operators may occur only as Aφ and Eφ, where φ is a formula in which the outermost
operator is one of the temporal operators X,U,R,F or G. A further subfragment of this language CTLK+,
specified by the grammar

φ ::= p | ¬p | φ1∨φ2 | φ1∧φ2 | AXφ | AFφ | AGφ | A(φ1Uφ2) | A(φ1Rφ2) | Kiφ

where p ∈ Prop and i ∈ Ags. Intuitively, this is the sublanguage in which all occurrences of the operators
A and Ki are in positive position.

To give semantics to all these languages it suffices to give semantics to CTL∗K(Prop,Ags). We do
this using a variant of interpreted systems [8]. Let S be a set, which we call the set of global states. A
run over S is a function r : N→ S . A point is a pair (r,m) where r is a run and m ∈ N. Given a set R
of runs, we define Points(R) to be the set of all points of runs r ∈ R. An interpreted system for n agents
is a tuple I = (R,∼,π), where R is a set of runs over S , the component ∼ is a collection {∼i}i∈Ags, where
for each i ∈ Ags, ∼i is an equivalence relation on Points(R) (called agent i’s indistinguishability relation)
and π : S →P(Prop) is an interpretation function. We say that a run r′ is equivalent to a run r up to time
m ∈ N if r′(k) = r(k) for 0 ≤ k ≤ m.

SYNT 2015 Informal PRE-proceedings, Page 69

X. Huang & R. van der Meyden 3

We can define a general semantics of CTL∗K(V,Ags) by means of a relation I, (r,m) |= φ, where I
is an intepreted system, (r,m) is a point of I and φ is a formula. This relation is defined inductively as
follows:

• I, (r,m) |= p if p ∈ π(r(m)), for p ∈ Prop;

• I, (r,m) |= ¬φ if not I, (r,m) |= φ;

• I, (r,m) |= φ1∨φ2 if I, (r,m) |= φ1 or I, (r,m) |= φ2;

• I, (r,m) |= Aφ if I, (r′,m) |= φ for all runs r′ ∈ R equivalent to r up to time m;

• I, (r,m) |= Xφ if I, (r,m + 1) |= φ;

• I, (r,m) |= φ1Uφ2 if there exists m′ ≥ m such that I, (r,m′) |= φ2, and I, (r,k) |= φ1 for m ≤ k < m′;

• I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all points (r′,m′) ∼i (r,m) of I.

For the knowledge operators, this semantics is essentially the same as the usual interpreted systems
semantics. For the temporal operators, it corresponds to a semantics for branching time known as the
bundle semantics [5, 22]. We write I |= φ when I, (r,0) |= φ for all runs r of I.

We are interested in systems in which each of the agents runs a protocol in which it chooses its
actions based on local information, in the context of a larger environment. An environment for agents
Ags is a tuple E = 〈S , I, {Actsi}i∈Ags,−→, {Oi}i∈Ags,π〉, where

1. S is a finite set of states,

2. I is a subset of S , representing the initial states,

3. for each agent i, component Actsi is a finite set of actions that may be performed by agent i; we
define Acts = Πi∈AgsActsi to be the corresponding set of joint actions

4. −→⊆ S ×Acts×S is a transition relation, labelled by joint actions,

5. for each i ∈ Ags, component Oi is a mapping from S to some set O of observations,

6. π : S →P(Prop) is an interpretation of some set of atomic propositions Prop.

Intuitively, a joint action a represents a choice of action ai for each agent, performed simultaneously, and
the transition relation resolves this into an effect on the state. We assume that −→ is serial in the sense
that for all s ∈ S and a ∈ Acts there exists t ∈ S such that s

a−→ t. We assume that Actsi always contains at
least an action skip, and that for the joint action a with ai = skip for all agents i, we have s

a−→ t iff s = t.
The set O of observations is an arbitrary set: for each agent i, we will be interested in the equivalence
relation s ∼i t if Oi(s) = Oi(t) induced by the observation function Oi rather than the actual values of Oi.

A proposition p is local to agent i in the enviroment E if it depends only on the agent’s observation,
in the sense that for all states s, t with Oi(s) = Oi(t), we have p ∈ π(s) iff p ∈ π(t). We write Propi for
the set of propositions local to agent i. Intuitively, these are the propositions whose values the agent can
always determine, based just on its observation. We similarly say that a boolean formula is local to agent
i if it contains only propositions that are local to agent i. We assume that the set of local propositions is
complete with respect to the observations, in that for each observation o there exists a local formula φ
such that for all states s, we have Oi(s) = o iff π(s) |= φ. (This can be ensured by including a proposition
po that is true at just states s with Oi(s) = o, or by including a proposition v = c for each possible value c
of each variable v making up agent i’s observation.)

A concrete protocol for agent i ∈ Ags in such an environment E is a Dijkstra style nondeterministic
looping statement Pi of the form

do φ1→ a1 [] . . . [] φk→ ak od (1)

SYNT 2015 Informal PRE-proceedings, Page 70

4 The complexity of approximations for epistemic synthesis

where the a j are actions in Actsi and the φ j are boolean formulas local to agent i. Intuitively, this
is a nonterminating program that is executed by the agent repeatedly checking which of the guards
φ j holds, and then nondeterministically performing one of the corresponding actions ai. If none of
the guards holds, then the action skip is performed. That is, implicitly, there is an additional clause
¬φ1∧ . . .¬φn→ skip. Without loss of generality, we may assume that the ai are distinct. (We can always
amalgamate two cases φ1 → a and φ2 → a with the same action a into a single case φ1 ∨φ2 → a.) We
say that action a j is enabled in protocol Pi at state s if φ j holds with respect to the assignment π(s), and
write en(Pi, s) for the set of all actions enabled in protocol Pi at state s.

A joint protocol P is a collection {Pi}i∈Ags of protocols for the individual agents. A joint action
a ∈ Acts is enabled by P at a state s if ai ∈ en(Pi, s) for all i ∈ Ags. We write en(P, s) for the set of all joint
actions enabled by P at state s.

Given an environment E = 〈S , I, {Acts}i∈Ags,−→, {Oi}i∈Ags,π〉 and a joint protocol P for the agents
in E, we may construct an interpreted system I(E,P) = (R(E,P),∼,π) over global states S as follows.
The set of runs R(E,P) consists of all runs r : N→ S such that r(0) ∈ I and for all n ∈ N there exists
a ∈ en(P,r(n)) such that r(n)

a−→ r(n + 1). The component ∼= {∼i}i∈Ags is defined by (r,m) ∼i (r′,m′) if
Oi(r(m)) = Oi(r′(m′)), i.e., two points are indistinguishable to agent i if it makes the same observation at
the corresponding global states; this is known in the literature as the observational semantics for knowl-
edge. The interpretation π in the interpreted system I(E,P) is identical to that in the environment E.

Note that in I = I(E,P), the satisfaction of formulas of the form Kiφ in fact depends only on the
observation Oi(r(m)). We therefore may write I,o |= Kiφ for an observation value o to mean I, (r,m) |=
Kiφ for all points (r,m) of I with Oi(r(m)) = o.

3 Epistemic Protocol Specifications

Protocol templates generalize concrete protocols by introducing some variables that may be instantiated
with local boolean formulas in order to obtain a concrete protocol. Formally, a protocol template for
agent i ∈ Ags is an expression in the same form as (1), except that the φ j are now boolean expressions, not
just over the local atomic propositions Propi, but may also contain boolean variables from an additional
set X of template variables. We write Vars(Proti) for the set of these additional boolean variables that
occur in some φi.

An epistemic protocol specification is a tuple S = 〈Ags,E, {Pi}i∈Ags,Φ〉, consisting of a set of agents
Ags, an environment E for Ags, a collection of protocol templates {Pi}i∈Ags for environment E, and a
collection of epistemic logic formulas Φ over the agents Ags and atomic propositions X ∪ Prop. In
this paper, we assume Φ ⊆ CTLK(Ags,X ∪Prop). We require that Vars(Pi) and Vars(P j) are disjoint
when i , j.

Intuitively, the protocol templates in such a specification lay out the abstract structure of some con-
crete protocols, and the variables in X are “holes” that need to be filled in order to obtain a concrete
protocol. The formulas in Φ state constraints on how the holes may be filled: it is required that these
formulas be valid in the model that results from filling the holes.

To implement an epistemic protocol specification with respect to the observational semantics, we
need to replace each template variable v in each agent i’s protocol template by an expression over the
agent’s local variables, in such a way that the specification formulas are satisfied in the model resulting
from executing the resulting standard program. We now formalize this semantics.

Let θ be a substitution mapping each template variable x ∈ Vars(Pi), for i ∈ Ags, to a boolean formula
local to agent i. We may apply such a substitution to a protocol template Pi in the form (1) by applying θ

SYNT 2015 Informal PRE-proceedings, Page 71

X. Huang & R. van der Meyden 5

to each of the formulas φ j, yielding

do φ1θ→ a1 [] . . . [] φkθ→ ak od

which we write as Piθ. Since the φ jθ contain only propositions in Propi, this is a concrete protocol
for agent i. Consequently, we obtain a joint concrete protocol Pθ = {Piθ}i∈Ags, which may be executed
in the environment E, generating the system I(E,Pθ). The substitution θ may also be applied to the
specification formulas in Φ. Each φ ∈ Φ is a formula over variables X ∪Prop, so φθ is a formula over
variables Prop. We write Φθ for {φθ | φ ∈Φ}. We say that such a substitution θ provides an implementation
of the epistemic protocol specification S, provided I(E, {Piθ}i∈Ags) |= Φθ. The problem we study in this
paper is the following: given an environment E and an epistemic protocol specification S, synthesize an
implementation θ.

Knowledge-based programs [8, 9] are a special case of epistemic protocol specifications. Essentially,
knowledge-based programs are epistemic protocol specifications in which the set Φ is a collection of
formulas of the form AG(x ⇔ Kiψ), with exactly one such formula for each agent i ∈ Ags and each
template variable x ∈ Vars(Pi). That is, each template variable is associated with a formula of the form
Kiψ, expressing some property of agent i’s knowledge, and we require that the meaning of the template
variable be equivalent to this property. The following example, an extension of an example from [4],
illustrates the motivations for knowledge-based programs that have been advocated in the literature.

Example 1 Two robots, A and B, sit on linear track with discretized positions 0 . . .10. Initially A is at
position 0 and B is at position 10. Their objective is to meet at a position at least 2, without colliding.
Each robot is equipped with noisy position sensor, that gives at each moment of time a natural number
value in the interval [0, . . . ,10]. (We consider various different sensor models below, each defined by a
relationship between the sensor reading and the actual position.) The robots do not have a sensor for
detecting each other’s position. Each robot has an action Halt and an action Move. The Halt action
brings the robot to a stop at its current location, and it will not move again after this action has been
performed. The Move action moves the robot in the direction that it is facing (right, i.e., from 0 to 10 for
A, and left for B). However, the effects of this action are unreliable: when performed, the robot either
stays at its current position or moves one step in the designated direction.

Because of the nondeterminism in the sensor readings and the robot motion, it is a non-trivial matter
to program the robots to achieve their goal. In particular, the programmer needs to reason about how the
sensor readings are related to the actual positions, in view of the assumptions about the possible robot
motions. However, there is a natural abstract description of the solution to the problem at the level of
agent knowledge, which we may capture as a knowledge-based program as follows: A has the epistemic
protocol specification

PA = do
¬x→Move
[] x →Halt

od

AG(x⇔ KA(positionA ≥ 2))

SYNT 2015 Informal PRE-proceedings, Page 72

6 The complexity of approximations for epistemic synthesis

and B has the epistemic protocol specification

PB = do
y→Move
[] ¬y→Halt

od

AG(y⇔ KB(
∧

p∈[0,...10] positionB = p⇒ AG(positionA < p−1)))

Intuitively, the specification for A says that A should move to the right until it knows that its position is at
least 2. The specification for B says that B should move to the left so long as its knows that, if its current
position is p, then A’s position will always be to the left of the position p−1 that a move might cause B
to enter. If this does not hold then there could be a collision.

One of the benefits of knowledge-based programs is that they can be shown to guarantee correctness
properties of solutions for a problem independently of the way that knowledge is acquired and repre-
sented. This gives a desirable level of abstraction that enables a single knowledge level description to
be used to generate multiple implementations that are tailored to different environments.

In the case of the above knowledge-based program, we note that it guarantees several properties
independently of the details of the sensor model. Informally, since A halts only when it knows that its
position is at least 2, and KA p⇒ p is a tautology of the logic of knowledge, its program ensures that
when A halts, its position will be at least 2. Similarly, since B moves at most one position in any step,
and moves only when it knows that moving to the position to its left will not cause a collision with A,
a move by B will not be the cause of a collision. It remains to show that A does not cause a collision
with B — this requires assumptions about A’s sensor. (Note that if A is blind it never halts, and could
collide with B even if B never moves, so assumptions are needed.) For termination, moreover, we require
fairness assumptions about the way that A and B move (e.g., an action Move performed infinitely often
eventually causes the position to change.).

What implementations exist for the knowledge-based program depend on the assumptions we make
about the error in the sensor readings. We assume that for each agent i, and possible sensor value v,
there are propositions sensori = v, sensori ≥ v, and sensori ≤ v in Propi, with the obvious meaning.
Suppose that we take the robots’ position sensor to be free of error, i.e. for each agent i, we always have
sensori = positioni. Then agent i always knows its exact position from its sensor value. In this case,
the knowledge-based program has an implementation with θ(x) is sensorA = 2 and θ(y) is sensorB ≥ 4.
In this implementation, A halts at position 2 and B halts at position 3 (assuming that they reach these
positions.)

On the other hand, suppose that the sensor readings may be erroneous, with a maximal error of 1, i.e.,
when the robot’s position is p, the sensor value is in {p−1, p, p + 1}. In this case, there exists an imple-
mentation θ in which θ(x) is sensorA = 3∨ sensorA = 4∨ sensorA = 5, and θ(y) is sensorB = 4∨ sensorB =

5∨ sensorB = 6. In this implementation, A moves until it gets a sensor reading in the set {3,4,5}, and
then halts. The effect is that A halts at a location in the set {2,3,4}; which one depends on the pattern of
sensor readings obtained. For example, the sequence (0,0), (1,1), (2,2), (3,2), (4,3) of (position, sensor)
values leaves A at position 4, whereas the sequence (0,0), (1,1), (2,3) leaves A at position 2. The effect of
the choice of θ(y) is that B moves to the left and halts in one of the positions {5,6,7}. One run in which B
halts at position 5 has (position, sensor) values (10,10), (9,9), (8,8), (7,7), (6,7), (5,4). A run in which B
halts at position 7 is where these values are (10,10), (9,9), (8,8), (7,6). Note that here the sensor reading
6 tells B that it is in the interval [5,7], so it could be at 5. It is therefore not safe to move, since A might
be at 4.

SYNT 2015 Informal PRE-proceedings, Page 73

X. Huang & R. van der Meyden 7

Pi = do
start∧ xi→ c

[] start∧¬xi→ w
[] ¬start→ p

od

AG(xi⇔ KiAXw)

start

(w,w)

w

(w,c)

(c,w)

(c,c)

w,c

c

Figure 1: Knowledge-based program and environment

One of the advantages of the knowledge-based programs is that their implementations are optimal in
the way that they use the information encoded in the agent’s observations. For example, the program for
A says that A should halt as soon as it knows that it is in the goal region. In the case of the sensor with
noise at most 1, the putative implementation for A given by θ(x) = sensorA ≥ 4 would also ensure that
A halts inside the goal region [2,10], but would not implement the knowledge-based program because
there are situations (viz. sensorA = 3), where A does not halt even though it knows that it is safe to halt.

The semantics for knowledge-based programs results in implementations that are highly optimized
in their use of information. Because knowledge for an implementation θ is computed in the system
I(E,Pθ), agent’s may reason with complete information about the implementation they are running in
determining what information follows from their observations. This introduces a circularity that makes
finding implementations of knowledge-based programs an inherently complex problem. Indeed, it also
has the consequence that it is possible for a knowledge-based program to have no implementations. The
following provides a simple example where this is the case. It also illustrates a somewhat counterintuitive
aspect of knowledge-based programs, that we will argue is improved by our proposed ordered semantics
for epistemic specifications below.

Example 2 Alice and Bob have arranged to meet for a picnic. They are agreed that a picnic should have
both wine and cheese, and each should bring one or the other. However, they did not think to coordinate
in advance what each is bringing, and they are now not able to communicate, since Alice’s phone is in the
shop for repairs. They do know that each reasons as follows. Cheese being cheaper than wine, they prefer
to bring cheese, and will do so if they know that there is already guaranteed to be wine. Otherwise, they
will bring wine. This situation can be captured by the knowledge-based program (for each i ∈ {A,B}) and
environment depicted in Figure 1. Here start is a proposition, local to both agents, that holds before the
picnic (at time 0). We use w,c as propositions that hold if there is wine (respectively, cheese) in the picnic
state (at time 1). Actions w,c,p represent bringing wine, bringing cheese, and picnicking, respectively.
For any omitted joint actions a from a state s in the diagram, we assume an implicit self-loop s

a−→ s. We
assume that for all states s and i ∈ {A,B}, we have Oi(s) = s, i.e., both agents have complete information
about the current state.

This epistemic specification has no implementations. Note that in any implementation, each agent i
must choose either w or c at the initial state. For each such selection, there is a unique successor state
at time 1, so each implementation system I(Pθ,E) has exactly one state at time 1. If this state satisfies
w, then we have I(Pθ,E) |= Ki(AXw), and this implies that both agents select action c at the start state.
But then the state at time 1 does not satisfy w. Conversely, if the unique state at time 1 does not satisfy
w, then I(Pθ,E) |= ¬Ki(AXw), and this implies that both agents select action w at the start state, which
produces a state at time 1 that satisfies w, also a contradiction. In either case, the assumption that we
have an implementation results in a contradiction, so there are no implementations. �

SYNT 2015 Informal PRE-proceedings, Page 74

8 The complexity of approximations for epistemic synthesis

Testing whether there exists an implementation of a knowledge-based program when the temporal
basis of the temporal epistemic logic used is the linear time logic LTL is PSPACE complete [9]. However,
the primary source of the hardness here is that model checking LTL is already a PSPACE complete
problem.

In the case of CTL as the temporal basis, where model checking can be done in PTIME, the problem
of deciding the existence of an implementation of a given knowledge-based program in a given environ-
ment can be shown to be NP-complete. NP hardness follows from Theorem 5.4 in [9], which states that
for atemporal knowledge-based programs, in which the knowledge formulas Kiφ used do not contain
temporal operators, the complexity of determining the existence of an implementation is NP-complete.
However, the construction in the proof in [9] requires both the environment and the knowledge-based pro-
gram to vary. In practice, the size of the knowledge-based program is likely to be significantly smaller
than the size of the environment, inasmuch as it is created by hand and effectively amounts to a form of
specification. An alternate approach is to measure complexity as a function of the size of the environment
for a fixed knowledge-based program. Even here, it turns out, the problem of deciding the existence of
an implementation is NP-hard for very simple knowledge-based programs.

Theorem 1 There exists a fixed atemporal knowledge-based program P for a single agent, such that the
problem of deciding, given an environment E, whether P has an implementation in E, is NP-hard.

The upper bound of NP for deciding the existence of implementations of knowledge-based programs
is generalized by the following result for our more general notion of epistemic protocol specification.

Theorem 2 Given an environment E and an epistemic protocol specification S expressed using CTLK,
the complexity of determining the existence of an implementation for S in E is in NP.

Theorem 2 assumes that the environment is presented by means of an explicit listing of its states and
transitions. In practice, the inputs to the problem will be given in some format that makes their repre-
sentation succinct, e.g., states will be represented as assignments to some set of variables, and boolean
formulas will be used to represent the environment and protocol components. For this alternate input
format, the problem of determining the existence of an implementation of a given epistemic protocol
specification is NEXPTIME-complete [14].

Under either an implicit or explicit representation of environments, these results suggest that synthe-
sis of implementations of general epistemic protocol specifications, and knowledge-based programs in
particular, is unlikely to be practical. An implementation using symbolic techniques is presented in [14],
but it works only on small examples and scales poorly (it requires the introduction of exponentially many
fresh propositions before using BDD techniques; the number of propositions soon reaches the limit that
can be handled efficiently by BDD packages.) In the following section, we consider a restricted class
of specifications that weakens the notion of knowledge-based program in such a way that implementa-
tions can always be found, and focus on how to efficiently derive implementations that approximate the
implementations of corresponding knowledge-based programs as closely as possible.

4 An Ordered Semantics

Sound local proposition epistemic protocol specifications are a generalization of knowledge-based pro-
grams, introduced in [7], with one of the motivations being that they provide a larger space of potential
implementations, that may overcome the problem of the high complexity of finding an implementation.
(There is the further motivation that the implementation of a knowledge-based program, when one exists,

SYNT 2015 Informal PRE-proceedings, Page 75

X. Huang & R. van der Meyden 9

itself may be intractable; e.g., it is shown in [19] that for perfect recall implementations of atemporal
knowledge-based programs, deciding whether Kiφ holds at a given point of the implementation may be
a PSPACE-complete problem. This specific motivation is less of concern for the observational case that
we study in this paper.)

Formally, a sound local proposition epistemic protocol specification is one in which Φ is given by
means of a function κ with domain Vars(P), such that for each agent i and each template variable x ∈
Vars(Pi), the formula κ(x) is of the form Kiψ. The corresponding set of formulas for the epistemic
protocol specification is Φ = Φκ = {AG(x⇒ κ(x)) | x ∈ Vars(P)}.

As usual for epistemic protocol specifications, an implementation associates to each template vari-
able a boolean formula local to the corresponding agent, such that the resulting system satisfies the
specification Φ.1 Thus, whereas a knowledge-based program requires that each knowledge formula in
the program be implemented by a necessary and sufficient local formula, a sound local proposition spec-
ification requires only that the implementing local formula be sufficient.

It is argued in [7] that examples of knowledge-based programs can typically be weakened to sound
local proposition specifications without loss of the desired correctness properties that hold of all imple-
mentations. However, implementations of knowledge-based programs may guarantee optimality proper-
ties that are not guaranteed by the corresponding sound local proposition specifications. For example, an
implementation of a knowledge-based program that states “if Kiφ then do a” will be optimal in the sense
that it ensures that the agent will do a as soon as it knows that φ holds. By contrast, an implementation
that replaces Kiφ by a sufficient condition for this formula may perform a only much later, or even fail
to do so, even if the knowledge necessary to do a is deducible from the agent’s local state. (An example
of such a situation is given in [1], which identifies a situation where a cache coherency protocol fails to
act on knowledge that it has.)

Note that the substitution θ⊥, defined by θ⊥(x) = false for all template variables x, is always an
implementation for a sound local proposition specification S in an environment E. It is therefore trivial
to decide the existence of an implementation, and it is also trivial to produce a succinct representation
of an implementation. Of course, an implementation of a program “if x then do a” that sets x to be
false will never perform a, so this trivial implementation is generally not of much interest. What is
more interesting is to find good implementations, that approximate the corresponding knowledge-based
program implementations as closely as possible in order to behave as close to optimally as possible,
while remaining tractable.

Consider the order on substitutions defined by θ ≤ θ′ if for all variables x and states s ∈ S of the envi-
ronment we have π(s) |= θ(x)⇒ θ′(x). If both are implementations of S in E, we may find θ′ preferable
in that it provides weaker sufficient conditions (i.e., ones more often true) for the knowledge formulas
Kiφ of interest. Pragmatically, if φ is a condition that an agent must know to be true before it can safely
perform a certain action, the more often the sufficient condition θ(x) for Kiφ holds, the more often will
the agent perform the action in the implementation. It is therefore reasonable to seek implementations
that maximize θ with respect to the order ≤. The maximal sufficient condition for Kiφ is Kiφ itself, in the
system I(E,Pθ) corresponding to an implementation θ, expressed as an equivalent local formula.2

The following result makes this statement precise:

1By the assumption of locality of θ(x), validity of AG(θ(x)⇒ Kiψ) in a system is equivalent to validity of AG(θ(x)⇒ ψ),
but we retain the epistemic form for emphasis and to maintain the connection to knowledge-based programs.

2 The existence of such a formula follows from completeness of the set of local propositions. If we extend the propositions
in an environment to include for each agent i and possible observation o of the agent, a proposition pi,o that holds at a state
s iff Oi(s) = o, then the formula θ(x) such that I |= AG(θ(x)⇔ κ(x)), where κ(x) = Kiφ, can be constructed as

∨{pi,o | o ∈
Oi(S), I,o |= κ(x)}, and has size of order the number of observations.

SYNT 2015 Informal PRE-proceedings, Page 76

10 The complexity of approximations for epistemic synthesis

Theorem 3 Suppose that S is a sound local proposition epistemic protocol specification, and let S′ be
the knowledge-based program resulting from replacing each formula AG(x⇒ κ(x)) in Φ by the formula
AG(x⇔ κ(x)). Then every implementation θ of S′ is an implementation of S.

However, to have θ(x) equivalent to Kiφ in I(E,Pθ) would mean that θ implements a knowledge-
based program. The complexity results of the previous section indicate that this is too strong a require-
ment, for practical purposes, since it is unlikely to be efficiently implementable. The compromise we
explore in this paper is to require θ(x) to be equivalent to Kiφ not in the system I(E,Pθ) itself, but in
another system that approximates I(E,Pθ). The basis for the correctness of this idea is the following
lemma.

Lemma 1 Suppose that I⊆I′, that r is a run of I and that φ is a formula in which knowledge operators
and the branching operator A occur only in positive position. Then I′, (r,m) |= φ implies I, (r,m) |= φ.

In particular, if, for a sound local proposition epistemic protocol specification S, the formula κ(x)
associated to a template variable x is in CTLK+, then this result applies to the formula AG(x⇒ κ(x))
in Φκ, since this is also in CTLK+. Suppose the system I′ approximates the ultimate implementation
I(E,Pθ) in the sense that I′ ⊇ I(E,Pθ). Let θ(x) be a local formula such that I′ |= AG(θ(x)⇔ κ(x)).
Then also I′ |= AG(θ(x)⇒ κ(x)), hence, by Lemma 1, θ(x) will also satisfy the correctness condition
I(E,Pθ) |= AG(θ(x)⇒ κ(x)) necessary for θ to be an implementation of S.

Our approach to constructing good implementations of S will be to compute local formulas θ(x)
that are equivalent to κ(x) in approximations I′ of the ultimate implementation being constructed. We
take this idea one step further. Suppose that we have used this technique to determine the value of
θ(x) for some of the template variables x of S. Then we have increased our information about the
final implementation θ, so we are able to construct a better approximation I′′ to the final implementation
I(E,Pθ), in the sense that I′ ⊇I′′ ⊃I(E,Pθ). Note that if I′ |= AG(φ′⇔ κ(y)) and I′′ |= AG(φ′′⇔ κ(y)),
then it follows from I′ ⊇ I′′ that I′′ |= AG(φ′ ⇒ φ′′). That is, φ′′ is weaker than φ′, and hence a
better approximation to the knowledge condition κ(y) in the ultimate implementation I(E,Pθ). Thus, by
proceeding iteratively through the template variables, and improving the approximation as we construct a
partial implementation, we are able to obtain better approximations to κ(y) in I(E,Pθ) for later variables.

More precisely, suppose that we have a total pre-order on the set of all template variables Vars(P) =

∪i∈AgsVars(Pi), i.e., a binary relation ≤ on this set that is transitive and satisfies x ≤ y∨ y ≤ x for all
x,y ∈ Vars(P). Let this be represented by the sequence of subsets X1, . . . ,Xk, where for i ≤ j and x ∈ Xi

and y ∈ X j we have x < y if i < j and x ≤ y ≤ x if i = j. Suppose we have a sequence of interpreted systems
I0 ⊇ . . . ⊇ Ik. Define a substitution θ to be consistent with this sequence if for all i = 1 . . .k and x ∈ Xi,
we have Ii−1 |= AG(θ(x)⇔ κ(x)). That is, consistent substitutions associate to each template variable x a
local formula that is equivalent to (not just sufficient for) κ(x), but in an associated approximation system
rather than in the final implementation.

Proposition 1 Suppose that Ik is isomorphic to I(E,Pθ), and that for all x ∈ Vars(P), the formula κ(x)
contains knowledge operators and the branching operator A only in positive position. Then θ implements
the epistemic protocol specification 〈Ags,E,P,Φκ〉.

We will apply this result as follows: define an approximation scheme to be a mapping that, given
an epistemic protocol specification S = 〈Ags,E,P,Φ〉 and a partial substitution θ for S, yields a system
I(S, θ), satisfying the conditions

1. if θ ⊆ θ′ then I(S, θ) ⊇ I(S, θ′), and

2. if θ is total, then I(S, θ) is isomorphic to I(E,Pθ).

SYNT 2015 Informal PRE-proceedings, Page 77

X. Huang & R. van der Meyden 11

Assume now that S is a sound local proposition specification based on the mapping κ. Given the
ordering ≤ on Vars(P), with the associated sequence of sets X1 . . .Xk, we define the sequence θ0, θ1, . . . , θk

inductively by θ0 = ∅ (the partial substitution that is nowhere defined), and θ j+1 to be the extension
of θ j obtained by defining, for x ∈ X j+1, the value of θ j+1(x) to be the local proposition φ such that
I(S, θ j) |= AG(φ⇔ κ(x)). Plainly θ0 ⊆ θ1 ⊆ . . . ⊆ θk, so we have I(S, θ0) ⊇ I(S, θ1) ⊇ . . . ⊇ I(S, θ′k). It
follows from the properties of the approximation scheme and Proposition 1 that the substitution θk is
total and is an implementation of S.

This idea leads to an extension of the idea of epistemic protocol specifications: we now consider
specifications of the form (S,≤), where S is a sound local proposition epistemic protocol specification,
and ≤ is a total pre-order on the template variables of S. Given an approximation scheme, the construc-
tion of the previous paragraph yields a unique implementation of S. Intuitively, by specifying an order
≤, the programmer fixes the order in which implementations are synthesized for the template variables,
and the approach guarantees that variables later in the order are synthesized using information about the
values of variables earlier in the order.

5 A spectrum of approximations

It remains to determine which approximation scheme to use in the approach to constructing implemen-
tations described in the previous section. In this section, we consider a number of possibilities for the
choice of approximation scheme. A number of criteria may be applied to the choice of approximation
scheme. For example, since the programmer must select the order in which variables are synthesized, the
approximation scheme should be simple enough to be comprehensible to the programmer, so that they
may understand the consequences of their ordering decisions.

On the other hand, since synthesis is to be automated, we would like the computation of the values
θ(x) to be efficient. This amounts to efficiency of the model checking problem I(S, θ′) |= κ(x) for partial
substitutions θ′ and formulas κ(x) ∈ CTLK+. To analyze this complexity, we work below with a com-
plexity measure that assumes explicit state representations of environments, but we look for cases where
the model checking problem in the approximation systems is solvable in PTIME. We assume that the
protocol template P and the formulas Φ in the epistemic protocol specification are fixed, and measure
complexity as a function of the size of the environment E. This is because in practice, the size of the
environment is likely to be the dominant factor in complexity.

One immediately obvious choice for the approximation scheme is to take the system I(S, θ), for a
partial substitution θ, to be the union of all the systems I(E,Pθ′), over all total substitutions θ′ that extend
the partial substitution θ. This turns out not to be a good choice (it is the intractable case Iii,ir,sc below),
so we consider a number of relaxations of this definition. The following abstract view of the situation
provides a convenient format that unifies the definition of these relaxations.

Given an environment E with states S , define a strategy for E to be a function σ : S + → P(S) \ ∅
mapping each nonempty sequence of states to a set of possible successors. We require that for each
t ∈ σ(s0 . . . sk) we have sk

a−→ t for some joint action a. Given a set Σ of strategies, we can construct an
interpreted system consisting of all runs consistent with some strategy in Σ. We encode the strategy into
the run. We use the extended set of global states S ×Σ. We take RΣ to be the set of all r : N→ S ×Σ

such that there exists a strategy σ such that for all n ∈ N we have r(n) = (sn,σ), for some sn ∈ S , and, we
have sn+1 ∈σ(s0s1 . . . sn) for all n ∈N. Intuitively, this is the set of all infinite runs, each using some fixed
strategy in Σ, with the strategy encoded into the state. We define I(E,Σ) = (RΣ,∼,π′) where ∼= {∼i}i∈Ags

is the relation on points of RΣ defined by (r,m) ∼i (r′,m′) if, with r(m) = (s,σ) and r′(m′) = (s′,σ′), we

SYNT 2015 Informal PRE-proceedings, Page 78

12 The complexity of approximations for epistemic synthesis

have Oi(s) = Oi(s′). The interpretation π′ on S ×Σ is defined so that π′(s,σ) = π(s), where s ∈ S , σ ∈ Σ

and π is the interpretation from E.
A memory definition is a collection of functions µ = {µi}i∈Ags with each µi having domain S +. In

particular, we work with the following memory definitions derived using the observation functions in the
environment E:

• The perfect information, perfect recall definition µpi,pr = {µpi,pr
i }i∈Ags where

µ
pi,pr
i (s0 . . . sk) = s0 . . . sk

• The perfect information, imperfect recall definition µpi,ir = {µpi,ir
i }i∈Ags where

µ
pi,ir
i (s0 . . . sk) = sk

• The imperfect information, perfect recall definition µii,pr = {µii,pr
i }i∈Ags where

µ
ii,pr
i (s0 . . . sk) = Oi(s0) . . .Oi(sk)

• The imperfect information, imperfect recall definition µii,ir = {µii,ir
i }i∈Ags where

µii,ir
i (s0 . . . sk) = Oi(sk)

A strategy depends on memory definition µ if there exist functions Fi : range(µi)→P(Actsi) for i ∈ Ags
such that for all sequences ρ = s0 . . . sk, we have t ∈ σ(s0 . . . sk) iff s

a−→ t for some joint action a such that
for all i ∈ Ags, we have ai ∈ Fi(µi(s0 . . . sk)).

Let P be a joint protocol template and let θ be a partial substitution for P. A strategy σ is substitution
consistent with respect to P, θ and a memory definition µ if σ depends on µ and for all sequences s0 . . . sk

there exists a substitution θ′ ⊇ θ mapping all the template variables of P undefined by θ to truth values,
such that

σ(s0 . . . sk) = {t | there exists a ∈ en(Pθ′, sk), sk
a−→ t} (2)

Note that since the choice of θ′ is allowed to depend on s0 . . . sk, this does not imply that the set of possible
successors states σ(s0 . . . sk) depends only on the final state sk; the reference to sk in the right hand side
of equation 2 is included just to allow the enabled actions to be determined in a way consistent with the
substitution θ, which already associates some of the variables with predicates on the state sk.

Example 3 Consider the maximally nondeterministic, or top, strategy σ>, defined by σ>(s0 . . . sk) =

{t | there exists a ∈ Acts, sk
a−→ t} for all s0 . . . sk. Intuitively, this strategy allows any action to be taken at

any time. It is easily seen that σ> depends on every memory definition µ. However, it is not in general
substitution consistent, since there are protocol templates for which the set of enabled actions (and hence
the transitions) depend on the substitution.

Consider the protocol template P = do x→ a [] ¬x→ b od for a single agent, in an environment with

states S = {s0, s1, s2} and transitions s0
a−→ s1, s0

b−→ s2, s1
a,b−→ s1 and s2

a,b−→ s2. Let θ be the empty
substitution. For all substitutions θ′, en(Pθ′, s0) is either {a} or {b}, so for the sequence s0, the right hand
side of equation (2) is equal to either {s1} or {s2}. For the strategy σ>, we have σ>(s0) = {s1, s2}. Hence
this strategy is not substitution consistent in this environment. �

We now obtain eight sets of strategies by choosing an information mode a ∈ {pi, ii}, a recall mode
b ∈ {pr, ir} and a selection c ∈ {sc,nsc} to reflect a choice with respect to the requirement of substitution
consistency. Formally, given a joint protocol template P, a partial substitution θ for P, and an environment
E, we define Σa,b,c(P, θ,E) to be the set of all strategies in E that depend on µa,b, and that are substitution
consistent with respect to P, θ and µa,b in the case c = sc.

SYNT 2015 Informal PRE-proceedings, Page 79

X. Huang & R. van der Meyden 13

(ii,ir,sc)

(pi,ir,sc)

(pi,pr,sc) (pi,ir,nsc) (ii,pr,nsc)

(ii,ir,nsc)

(pi,pr,nsc)

(ii,pr,sc)

I(E,Pθ)

σ⊤

PTIME

coNP hard

Figure 2: Lattice structure of the approximations

Corresponding to these eight sets of strategies, we obtain eight approximation schemes. Let S be
an epistemic protocol specification with joint protocol template P, and environment E. Given a partial
substitution θ for P, and a triple a,b,c, we define the system Ia,b,c(S, θ) to be I(Σa,b,c(P, θ,E),E).

Proposition 2 For each information mode a ∈ {pi, ii}, a recall mode b ∈ {pr, ir} and selection c ∈ {sc,nsc},
the mapping Ia,b,c is an approximation scheme.

Additionally we have the approximation scheme I>(S, θ) defined to be I({σ>E,Pθ},E), based on the
top strategy in E relative to the protocol template Pθ, which is defined by taking σ>E,Pθ(s0 . . . sk) to be the
set of all states t ∈ S such that there exists a joint action a ∈ Acts such that for all i ∈ Ags, the protocol
template Piθ contains a clause φθ → ai with φθ satisfiable relative to π(sk). (We note that here π(sk)
provides the values of propositions Prop and we are asking for satisfiability for some assignment to the
variables on which θ is undefined. Because we are interested in the case where P, and hence φ, is fixed,
this satisfiability test can be performed in PTIME as the environment varies.)

For reasons indicated in Example 3, the strategy σ>E,Pθ is not substitution-consistent. However, it is
easily seen to depend only on the values Oi(sk), so we have σ>E,Pθ ∈ Σii,ir,nsc.

Figure 2 shows the lattice structure of the approximation schemes, with an edge from a scheme I to a
scheme I′ meaning that I′ is a closer approximation to the final system I(E,Pθ) synthesized, informally
in the sense that I has more runs and more branches from any point than does I′. (Generally, the relation
is one of simple containment of the sets of runs, but in the case of edges involving I(E,Pθ) and σ>, we
need a notion of simulation to make this precise.)

Besides yielding an approach to the construction of implementations of epistemic protocol spec-
ifications, we note that our approach also overcomes the counterintuitive aspect of knowledge-based
programs illustrated in Example 2.

Example 4 Suppose that we replace the specification formulas AG(xi ⇔ KiAXw) in Example 2 by the
weaker form AG(xi ⇒ KiAXw), and impose the ordering xA < xB on the template variables. We com-
pute the implementation obtained when we use I> as the approximation scheme. We take θ0 to be the
empty substitution. I({σ>E,Pθ0

},E) has all possible behaviours of the original environment, so at the start

SYNT 2015 Informal PRE-proceedings, Page 80

14 The complexity of approximations for epistemic synthesis

state, we have ¬KA(AXw). It follows that substitution θ1, which has domain {xA} assigns to xA a local
proposition that evaluates to false at the initial state. Hence, PAθ1 selects action w at the initial state.
The effect of this is to delete the bottom transition from the state transition diagram for the environment
in Figure 1. It follows that in I({σ>E,Pθ1

},E), we have KB(AXw) at the initial state, so θ2(xB) evaluates
to true at the initial state. This means that the final implementation Pθ2 is the protocol in which Alice
brings wine and Bob brings cheese, leading to a successful picnic, by contrast with the knowledge-based
program, which does not yield any solutions to their planning problem. (We remark that both Alice and
Bob could compute this implementation independently, once given the ordering on the variables. They
do not need to communicate during the computation of the implementation.) �

We noted above in Theorem 3 that a sound local proposition specification that is obtained from a
knowledge-based program includes amongst its implementations all the implementations of the knowledge-
based program. The knowledge-based program, in effect, imposes additional optimality constraints on
these implementations. Our ordered semantics aims to approximate these optimal implementations. It
is therefore of interest to determine whether the ordered semantics for sound local proposition specifi-
cations can sometimes find such optimal implementations. Although it is not true in general, there are
situations where the implementations obtained are indeed optimal. The following provides an example.

Example 5 Consider the sound local proposition specification obtained from the knowledge-based pro-
gram of Example 1 by replacing the⇔ operators in the formulas by⇒. That is, we take Φ to contain the
formulas

AG(x⇒ KA(positionA ≥ 2))

and

AG(y⇒ KB(
∧

p∈[0,...10]

positionB = p⇒ AG(positionA < p−1)))

We consider the setting where sensors readings are within 1 of the actual position. Suppose that we
use I> as the approximation scheme, and order the template variables using x < y, i.e., we synthesize a
solution for A before synthesizing a solution for B (knowing what A is doing.) Then, for A, we construct
θ(x) as the local proposition for A that satisfies

AG(x⇔ KA(positionA ≥ 2))

in a system where both A and B may choose either action Move or Halt at any time. We obtain the
substitution θ1 where θ1(x) is sensorA ≥ 3, which ensures that always positionA ≤ 4, and in which A may
halt at a position in the set {2,3,4}. In the next step, we synthesize θ(y) as the local proposition such that

AG(y⇔ KB(
∧

p∈[0,...10]

positionB = p⇒ AG(positionA < p−1)))

in the system where A runs PAθ1, and where B may choose either action Move or Halt at any time. In
this system, B knows that A’s position is always at most 4, so it is safe for B to move if positionB ≥ 6.
Agent B knows that its position is at least 6 when it gets a sensor reading at least 7. Hence, we obtain the
substitution θ2 where θ2(y) is sensorB ≥ 7 and θ2(x) is sensorA ≥ 3. It can be verified that this substitution
is in fact an implementation of the original knowledge-based program.

SYNT 2015 Informal PRE-proceedings, Page 81

X. Huang & R. van der Meyden 15

6 Complexity of model checking in the approximations

To construct an implementation based on the extended epistemic protocol specification (S,≤) using an
approximation scheme I(S, θ), we need to perform model checking of formulas in CTLK+ in the sys-
tems produced by the approximation scheme. We now consider the complexity of this problem for the
approximation schemes introduced in the previous sections. We focus on the complexity of this problem
with the protocol template fixed as we vary the size of the environment, for reasons explained above.

We say that the environment-complexity of an approximation scheme I(S, θ) is the maximal com-
plexity of the problem of deciding I(S, θ),o |= κ(x) with all components fixed and only the environment
E in S varying. More precisely, write S− = 〈Ags,P, κ〉 for a tuple consisting of a set Ags of agents, a col-
lection P = {Pi}i∈Ags of protocol templates for these agents, and a mapping κ associating, for each agent i,
a formula κ(x) = Kiφ of CTLK+ to each template variable x in Pi. Given an environment E, write S−(E)
for the epistemic protocol specification 〈Ags,E, {Pi}i∈Ags,Φκ〉 obtained from these components. Say that
E fits a tuple (S−, θ,o, x) consisting of S− as above, a substitution θ assigning a boolean formula to a
subset of the template variables in P, an observation o and a variable x, if E contains all actions used in
P, o is an observation in E of the agent i such that Pi contains x, and for each x such that θ(x) is defined,
the formula θ(x) is local in E to the agent i such that Pi contains x. Given S− = 〈Ags,P, κ〉 and θ, o and x,
define EC(S−,θ,o,x) to be the set

{E | E fits (S−, θ,o, x) and I(S−(E), θ),o |= κ(x)} .

Then the environment-complexity of an approximation scheme I(S, θ) is the maximal complexity of the
problem of deciding the sets EC(S−,θ,o,x) over all choices of S−, θ, o and x .

We note that even though we have allowed perfect recall and/or perfect information in the strategy
spaces used by the approximation, when we model check in the system generated by the approximation,
knowledge operators are handled using the usual observational (imperfect recall, imperfect information)
semantics. The stronger capabilities of the strategies are used to increase the size of the strategy space
in order to weaken the approximation. (Model checking with respect to perfect recall, in particular,
would increase the complexity of the model checking problem, whereas we are seeking to decrease its
complexity.)

It turns out that several of the approximation schemes, that are closest to the final system synthesized
(which would give the knowledge-based program semantics), share with the knowledge-based program
semantics the disadvantage of being intractable. These are given in the following result.

Theorem 4 The approximation schemes Iii,ir,sc, Iii,pr,sc, and Ipi,ir,sc have coNP-hard environment com-
plexity, even for a single agent.

Each of these intractable cases uses substitution consistent strategies and uses either imperfect recall
or imperfect information. The proofs vary, but one of the key reasons for complexity in the imperfect
recall cases is that the strategy must behave the same way each time it reaches a state. Intuitively, this
means that we can encode existential choices from an NP hard problem using the behaviour of a strategy
at a state in this case. In the case of Iii,pr,sc, we use obligations on multiple branches indistinguishable to
the agent to force consistency of independent guesses representing the same existential choice. All the
remaining approximation schemes, it turns out, are tractable:

Theorem 5 The approximation schemes I>, Iii,ir,nsc, Ipi,pr,sc, Ipi,ir,nsc, Iii,pr,nsc and Ipi,pr,nsc have envi-
ronment complexity in PTIME.

SYNT 2015 Informal PRE-proceedings, Page 82

16 The complexity of approximations for epistemic synthesis

The reasons are varied, but there are close connections to some known results. The scheme I>
effectively builds a new finite state environment from the environment and protocol by allowing some
transitions that would normally be disabled by the protocol, so its model checking problem reduces to
an instance of CLTK model checking, which is in PTIME by a mild extension of the usual CTL model
checking approach. It turns out, moreover, by simulation arguments, that for model checking CTLK+

formulas, the approximations Iii,ir,nsc and Iii,pr,nsc are equivalent to I>, i.e., satisfy the same formulas at
the same states, so the algorithm for I> also resolves these cases.

The cases Ipi,pr,sc and Ipi,pr,nsc are very close to the problem of module checking of universal CTL
formulas, which is known to be in PTIME [16]. The proof technique here involves an emptiness check
on a tree automaton representing the space of perfect information, perfect recall strategies (either substi-
tution consistent or not required to be so), intersected with an automaton representing the complement
of the formula. The cases Ipi,pr,nsc and Ipi,ir,sc can moreover be shown to be equivalent by means of
simulation techniques, so the latter also falls into PTIME.

The demarcation between the PTIME and co-NP hard cases is depicted in Figure 2. This shows there
are two best candidates for use as the approximation scheme underlying our synthesis approach. We
desire an approximation scheme that is as close as possible to the knowledge-based program semantics,
while remaining tractable. The diagram shows two orthogonal approximation schemes that are maximal
amongst the PTIME cases, namely I> and Ipi,pr,sc. The former generates a bushy approximation in
that it relaxes substitution consistency. The latter remains close to the original protocol by using substi-
tution consistent strategies, but at the cost of allowing perfect information, perfect recall strategies. It
is not immediately clear what the impact of these differences will be with respect to the quality of the
implementations synthesized using these schemes, and we leave this as a question for future work.

7 Related Work

Relatively little work has been done on automated synthesis of implementations of knowledge-based
programs or of sound local proposition specifications, particularly with respect to the observational
semantics we have studied in this paper. In addition to the works already cited above, some papers
[18, 17, 20, 21, 3] have studied the complexity of synthesis with respect to specifications in tempo-
ral epistemic logic using the synchronous perfect recall semantics. A symbolic implementation for
knowledge-based programs that run only a finitely bounded number of steps under a clock or perfect
recall semantics for knowledge is developed in [13].

There also exists a line of work that is applying knowledge based approaches and model checking
techniques to problems in discrete event control, e.g., [2, 10, 15]. In general, the focus of these works is
more specific than ours (e.g., in restricting to synthesis for safety properties, rather than our quite general
temporal epistemic specifications) but there is a similar use of monotonicity. It would be interesting to
apply our techniques in this area and conduct a comparison of the results.

8 Conclusion

In this paper we have proposed an ordered semantics for sound local proposition epistemic protocol
specifications, and analyzed the complexity of a model checking problem required to implement the
approach, for a number of approximation schemes. This leads to the identification of two optimal ap-
proximation schemes, I> and Ipi,pr,sc with respect to which the model checking problem has PTIME
complexity in an explicit state representation.

SYNT 2015 Informal PRE-proceedings, Page 83

X. Huang & R. van der Meyden 17

A number of further steps are required to obtain a practical framework for synthesis. Ultimately, we
would like to be able to implement synthesis using symbolic techniques, so that it can also be practicably
carried out for specifications in which the environment is given implicitly using program-like represen-
tations, rather than by means of an explicit enumeration of states. The complexity analysis in the present
paper develops an initial understanding of the nature of the model checking problems that may be helpful
in developing symbolic implementations. In the case of the approximation scheme I>, in fact, the associ-
ated model checking problem amounts essentially to CTLK model checking in a transformed model, for
which symbolic model checking techniques are well understood. In work in progress, we have developed
an implementation of this case, and we will report on our experimental findings elsewhere.

In the case of the approximation Ipi,pr,sc, the model checking problem is more akin to module check-
ing, for which symbolic techniques are less well studied. This case represents an interesting question
for future research, as does the question of how the implementations obtained in practice from these
tractable approximations differ.

Our examples in this paper give some initial data points that suggest both that the ordered approach
is able to construct natural implementations for the sound local proposition weakenings of knowledge-
based programs that lack implementations, as well as implementations of such weakenings that are in fact
implementations of the original knowledge-based program. More case studies are required to understand
how general these phenomena are in practice. It would be interesting to find sufficient conditions under
which the ordered approach is guaranteed to generate knowledge-based program implementations.

References

[1] K. Baukus & R. van der Meyden (2004): A knowledge based analysis of cache coherence. In: Proc. 6th Int.
Conf. on Formal Engineering Methods, pp. 99–114.

[2] S. Bensalem, D. Peled & J. Sifakis (2010): Knowledge Based Scheduling of Distributed Systems. In: Time
for Verification, Essays in Memory of Amir Pnueli, Springer LNCS 6200, pp. 26–41.

[3] R. Bozianu, C. Dima & E. Filiot (2014): Safraless Synthesis for Epistemic Temporal Specifications. In: Proc.
Int. Conf. on Computer Aided Verification, pp. 441–456.

[4] R. I. Brafman, J-C. Latombe, Y. Moses & Y. Shoham (1997): Applications of a logic of knowledge to motion
planning under uncertainty. JACM 44(5).

[5] J. Burgess (1979): Logic and time. Journal of Symbolic Logic 44, pp. 556–582.

[6] C. Dwork & Y. Moses (1990): Knowledge and common knowledge in a Byzantine environment: crash fail-
ures. Information and Computation 88(2), pp. 156–186.

[7] K. Engelhardt, R. van der Meyden & Y. Moses (1998): Knowledge and the Logic of Local Propositions. In:
Proc. Conf. Theoretical Aspects of Knowledge and Rationality, pp. 29–41.

[8] R. Fagin, J. Halpern, Y. Moses & M. Vardi (1995): Reasoning About Knowledge. MIT Press.

[9] R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1997): Knowledge-Based Programs. Distributed Computing
10(4), pp. 199–225.

[10] Susanne Graf, Doron Peled & Sophie Quinton (2012): Achieving distributed control through model checking.
Formal Methods in System Design 40(2), pp. 263–281. Available at http://dx.doi.org/10.1007/
s10703-011-0138-9.

[11] V. Hadzilacos (1987): A knowledge-theoretic analysis of atomic commitment protocols. In: PODS ’87: Proc.
6th ACM Symp. on Principles of Database Systems, pp. 129–134.

[12] J. Y. Halpern & L. D. Zuck (1992): A little knowledge goes a long way: knowledge-based derivations and
correctness proofs for a family of protocols. Journal of the ACM 39(3), pp. 449–478.

SYNT 2015 Informal PRE-proceedings, Page 84

18 The complexity of approximations for epistemic synthesis

[13] X. Huang & R. van der Meyden (2013): Symbolic Synthesis of Knowledge-based Program Implementations
with Synchronous Semantics. In: Proc. TARK, pp. 121–130.

[14] X. Huang & R. van der Meyden (2014): Symbolic Synthesis for Epistemic Specifications with Observational
Semantics. In: Proc. Tools and Algorithms for the Construction and Analysis of Systems, TACAS, pp.
455–469.

[15] Gal Katz, Doron Peled & Sven Schewe (2011): Synthesis of Distributed Control through Knowledge Accu-
mulation. In: Proc. Int. Conf on Computer Aided Verification, pp. 510–525.

[16] O. Kupferman, M. Y. Vardi & P. Wolper (2001): Module Checking. Information and Computation 164(2),
pp. 322–344.

[17] R. van der Meyden (1996): Constructing Finite State Implementations of Knowledge-Based Programs with
Perfect Recall. In: Intelligent Agent Systems, Theoretical and Practical Issues, LNCS, No. 1209, Springer,
pp. 135–151.

[18] R. van der Meyden (1996): Finite State Implementations of Knowledge-Based Programs. In: Proc. Conf. on
Foundations of Software Technology and Theoretical Computer Science, pp. 262–273.

[19] R. van der Meyden (1996): Knowledge Based Programs: On the Complexity of Perfect Recall in Finite
Environments. In: Proc. Conf. on Theoretical Aspects of Rationality and Knowledge, pp. 31–49.

[20] R. van der Meyden & M. Y. Vardi (1998): Synthesis from Knowledge-Based Specifications. In: Proc. CON-
CUR’98, Springer LNCS 1466, pp. 34–49.

[21] R. van der Meyden & T. Wilke (2005): Synthesis of Distributed Systems from Knowledge-Based Specifica-
tions. In: Proc. Int. Conf. on Concurrency Theory, CONCUR, pp. 562–576.

[22] R. van der Meyden & K. Wong (2003): Complete Axiomatizations for Reasoning about Knowledge and
Branching Time. Studia Logica 75(1), pp. 93–123.

[23] Moshe Y. Vardi & Pierre Wolper (1986): Automata-Theoretic Techniques for Modal Logics of Programs. J.
Comput. Syst. Sci. 32(2), pp. 183–221.

SYNT 2015 Informal PRE-proceedings, Page 85

