absTract sOlution Analyzing Synthesis Tool
(TOAST)

Heinz Riener Rudiger Ehlers
DLR, e.V. Uni Bremen & DFKI, GmbH
Germany, Bremen Germany, Bremen

This work was partially supported by the
European Union (IMMORTAL project, grant no.
644905) and by the Institutional Strategy of the
University of Bremen, funded by the German

Excellence Initiative.

i DLR

Abstract Enumeration

Grammar:
Start ::=x |y (Start + Start) | (Const * Start)
|

|1z |
1]2

V4
Const::=0]1]

Deducable concrete expressions: TOAST uses abstract expressions:
X

y (Start{x,y} + 2*y)
Z

(X + X)
(X +y)

(0%)
(1%)

(2 (Lx+(y+2))

i DLR

Abstract Enumeration

e Nonterminal are parametrized with support sets
» Use sanity checks to prune the search space

Discard solution if the specification requires a
non-zero value for some input

Discard solution if two inputs exists that differ
only in y and must lead to the same outputs

:> y is not part of the solution

Functional Consistency

» SMT query to rule out abstract expression f*:
3i,i'Vc,c’,0,0": = (Corr(i,o) A Corr(i’, o) Af*(i,c) =oAf*(i',c’) =0" A
Consistency(i,i’, c,c"))

Abstract expression f*(x,y) = (Start{x,y} + 2 * x):

dx,y,x',y'Vc,c’,0,0":
—(Corr(x,y,0) ACorr(x',y',0") A
(c+ (Z*x)) =oAN(c"+2*xx")=0"A
(x=x'ANy=y"=>c=/c"))

Summary

absTract sOlution Analyzing Synthesis Tool (TOAST):
* Prunes the search space by analyzing abstract expressions
 Several tweaks on the grammar level

e SMT queries with quantifier alternation are expensive
» Prototype implemented in Python

i DLR

	 absTract sOlution Analyzing Synthesis Tool�(TOAST)
	Abstract Enumeration
	Abstract Enumeration
	Functional Consistency
	Summary

