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Abstract Enumeration

Grammar:
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Deducable concrete expressions: TOAST uses abstract expressions:
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Abstract Enumeration

e Nonterminal are parametrized with support sets
» Use sanity checks to prune the search space

Discard solution if the specification requires a
non-zero value for some input

Discard solution if two inputs exists that differ
only in y and must lead to the same outputs

:> y is not part of the solution




Functional Consistency

» SMT query to rule out abstract expression f*:
3i,i'Vc,c’,0,0": = (Corr(i,o) A Corr(i’, o) Af*(i,c) =oAf*(i',c’) =0" A
Consistency(i,i’, c,c"))

Abstract expression f*(x,y) = (Start{x,y} + 2 * x):

dx,y,x',y'Vc,c’,0,0":
—(Corr(x,y,0) ACorr(x',y',0") A
(c+ (Z*x)) =oAN(c"+2*xx")=0"A
(x=x'ANy=y"=>c=/c"))




Summary

absTract sOlution Analyzing Synthesis Tool (TOAST):
* Prunes the search space by analyzing abstract expressions
 Several tweaks on the grammar level

e SMT queries with quantifier alternation are expensive
» Prototype implemented in Python
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