CVC4 1.5 for Sygus Comp 2015

• CVC4 is an SMT solver
 • Fourth generation of Cooperating Validity Checker (CVC, CVC Lite, CVC3, CVC4)
 • Supports many ground theories:
 • Linear arithmetic, bitvectors, UF, datatypes, arrays, sets, strings, ...
 • Supports quantified formulas
 • Two new approaches for refutation-based synthesis [CAV 15]
 1. Single-invocation properties
 2. Syntax-guided synthesis (SyGuS) problems

• Submission for Sygus Comp 2015 was joint work between:
 • EPFL: Andrew Reynolds, Viktor Kuncak
 • University of Iowa: Cesare Tinelli
 • NYU: Clark Barrett, Morgan Deters
 • Verimag: Tim King
Refutation-Based Synthesis

\[\exists f. \forall xy. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y)) \]

- Example: find a function \(f \) that computes max of two integers
Refutation-Based Synthesis

$$\exists f. \forall xy. \text{isMax}(f(x,y), x, y)$$
Refutation-Based Synthesis

\[\exists f. \forall x y. \text{isMax}(f(x, y), x, y) \]

Find model for \(f \) that satisfies this property
Refutation-Based Synthesis

\[\exists f. \forall xy. \text{isMax}(f(x,y),x,y) \]

Negate

\[\forall f. \exists xy. \neg \text{isMax}(f(x,y),x,y) \]

Instead, show negated formula is *unsatisfiable*.
Refutation-Based Synthesis

\[\exists f. \forall xy. \text{isMax}(f(x,y), x, y) \]

Negate

\[\forall f. \exists xy. \neg \text{isMax}(f(x,y), x, y) \]

- Eliminate second-order quantification over \(f \) in two ways
Refutation-Based Synthesis

\[\exists f. \forall xy. \text{isMax}(f(x, y), x, y) \]

Negate

\[\forall f. \exists xy. \neg \text{isMax}(f(x, y), x, y) \]

If *single invocation*, replace \(f \) with (first-order) variable \(g \)

\[\exists xy. \forall g. \neg \text{isMax}(g, x, y) \]

\(\Rightarrow g \) represents the return value of \(f \)
Refutation-Based Synthesis

∃f. ∀xy.isMax(f(x,y), x, y)

Negate

∀f. ∃xy.¬isMax(f(x,y), x, y)

If single invocation, replace f with (first-order) variable g

∃xy.∀g.¬isMax(g, x, y)

Otherwise, replace f with datatype d, and operator ev

D := zero | one | plus(D1, D2) | ...
∀d.∃xy.¬isMax(ev(d, x, y), x, y)
∀dxy.ev(d, x, y) =...

⇒ D models the domain of possible solutions for f
Refutation-Based Synthesis

\[\exists f. \forall x y. \text{isMax}(f(x,y), x, y) \]

Negate

\[\forall f. \exists x y. \neg \text{isMax}(f(x,y), x, y) \]

If single invocation, replace \(f \) with (first-order) variable \(g \)

\[\exists x y. \forall g. \neg \text{isMax}(g, x, y) \]

Otherwise, replace \(f \) with datatype \(d \), and operator \(\text{ev} \)

\[D := \text{zero} | \text{one} | \text{plus}(D1, D2) | \ldots \]

\[\forall d. \exists x y. \neg \text{isMax}(\text{ev}(d, x, y), x, y) \]

\[\forall d xy. \text{ev}(d, x, y) = \ldots \]

Single invocation approach Syntax-guided approach
Solving Synthesis Conjectures in an SMT Solver

\[\exists f. \forall x y. \text{isMax}(f(x, y), x, y) \]
Solving Synthesis Conjectures in an SMT Solver

\[\exists f. \forall xy. \text{isMax}(f(x,y), x, y) \]

1. Negate, convert to first order

\[\forall g. \neg \text{isMax}(g, a, b) \]

SAT Solver +

Dec Procedures

SMT Solver

Quantifiers

Module
Solving Synthesis Conjectures in an SMT Solver

1. Negate, convert to first order

\[\exists f. \forall xy. \text{isMax}(f(x,y), x, y) \]

2. Add instances until “unsat”, via counterexample-guided quantifier instantiation

\[\neg \text{isMax}(a, a, b), \neg \text{isMax}(b, a, b), \]

[Diagram]

- SAT Solver + Dec Procedures
- Quantifiers Module
- SMT Solver

unsat
Solving Synthesis Conjectures in an SMT Solver

1. Negate, convert to first order
 \[\exists f. \forall xy. \text{isMax}(f(x,y), x, y) \]

2. Add instances until "unsat", via counterexample-guided quantifier instantiation

 - \(\neg \text{isMax}(a,a,b) \)
 - \(\neg \text{isMax}(b,a,b) \)

3. Extract solution for \(f \) from unsat core

 \[f := \lambda xy. \text{ite} \left(\text{isMax}(x,x,y), x, y \right) \]

 \[\neg \text{isMax}(a,a,b), \neg \text{isMax}(b,a,b) \models \bot \]
CVC4 in Sygus Comp 2015

• Entered all three tracks (General, LIA, INV)
 • For general/LIA track:
 • Most benchmarks are \textit{single invocation}
 • Solution reconstruction methods to match syntactic restrictions, if necessary
 • For INV track:
 • All benchmarks are \textit{not single invocation}
 • Due to form of benchmarks, for transition relations T:
 $$\exists \text{inv. } \forall x. (\text{inv}(x) \land T(x, x')) \Rightarrow \text{inv}(x')$$
 \Rightarrow \text{Resorts to syntax-guided approach}