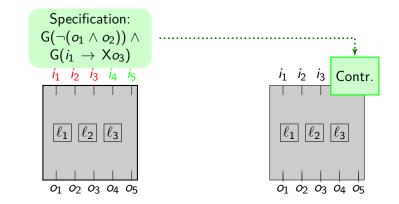
Compositional Algorithms for Succinct Safety Games

Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin, Ocan Sankur

SYNT'15

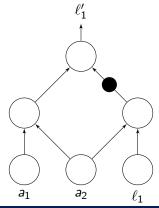
AbsSynthe https://github.com/gaperez64/AbsSynthe



Succinct Safety Games

Safety game: $\langle \text{Stat}, \text{Act}_u, \text{Act}_c, \delta, \mathcal{U} \rangle$ Succinct representation: $\text{Stat} = \{0, 1\}^L$, $\text{Act}_u = \{0, 1\}^{X_u}$, $\text{Act}_c = \{0, 1\}^{X_c}$, δ and \mathcal{U} are given by And-Inverter Graphs (AIG)

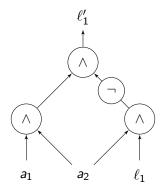
- ightarrow standard file format for sequential synchronous circuits
- $\rightarrow\,$ used in model checking and synthesis competitions



Succinct Safety Games

Safety game: $\langle \text{Stat}, \text{Act}_u, \text{Act}_c, \delta, \mathcal{U} \rangle$ Succinct representation: $\text{Stat} = \{0, 1\}^L$, $\text{Act}_u = \{0, 1\}^{X_u}$, $\text{Act}_c = \{0, 1\}^{X_c}$, δ and \mathcal{U} are given by And-Inverter Graphs (AIG)

- ightarrow standard file format for sequential synchronous circuits
- $\rightarrow\,$ used in model checking and synthesis competitions



The classical algorithm: attractor computation

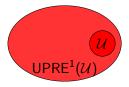
For the safety game $\langle \text{Stat}, \text{Act}_u, \text{Act}_c, \delta, \mathcal{U} \rangle$:

- uncontrollable predecessors: states where environment can force S in 1 step: UPRE(S) = {s | ∃a_u, ∀a_c, δ(s, a_u, a_c) ∈ S}
- **②** Compute the least fixpoint of UPRE starting from the error states \mathcal{U} .
- \rightarrow if $s_0 \in \mathsf{Stat} \setminus \mathsf{UPRE}^*(\mathcal{U})$, controller has a winning strategy

The classical algorithm: attractor computation

For the safety game $\langle \text{Stat}, \text{Act}_u, \text{Act}_c, \delta, \mathcal{U} \rangle$:

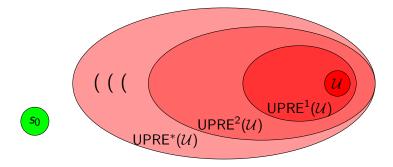
- uncontrollable predecessors: states where environment can force S in 1 step: UPRE(S) = {s | ∃a_u, ∀a_c, δ(s, a_u, a_c) ∈ S}
- **②** Compute the least fixpoint of UPRE starting from the error states \mathcal{U} .
- \rightarrow if $s_0 \in \mathsf{Stat} \setminus \mathsf{UPRE}^*(\mathcal{U})$, controller has a winning strategy



The classical algorithm: attractor computation

For the safety game $\langle \text{Stat}, \text{Act}_u, \text{Act}_c, \delta, \mathcal{U} \rangle$:

- uncontrollable predecessors: states where environment can force S in 1 step: UPRE(S) = {s | ∃a_u, ∀a_c, δ(s, a_u, a_c) ∈ S}
- **②** Compute the least fixpoint of UPRE starting from the error states \mathcal{U} .
- \rightarrow if $s_0 \in \text{Stat} \setminus \text{UPRE}^*(\mathcal{U})$, controller has a winning strategy



Implementation with BDDs

We use Binary Decision Diagrams (BDDs):

- data structure to represent Boolean functions
- \bullet efficient Boolean operations ($\land,\,\lor,\,\forall,\,\exists,\dots$) and equality test
- 2 basic approaches:
 - Compute a transition relation

$$T(L, X_u, X_c, L') = \bigwedge_{\ell \in L} \ell' \Leftrightarrow f_{\ell}(L, X_u, X_c)$$

and then set UPRE(S) = $\exists X_u, \forall X_c, \exists L'. T(L, X_u, X_c, L') \land S(L')$. (solved approximately 150 out of 530 benchmarks from last year's competition)

2 Keep a partitioned transition relation, and substitute f_ℓ for each ℓ in S

$$\mathsf{UPRE}(S) = \exists X_u, \forall X_c : S(L')[\ell' \leftarrow f_\ell(X_u, X_c, L)]_{\ell \in L}.$$

(solved approximately 500 benchmarks in 500 seconds)

Often: specifications are big conjunctions of smaller specifications

```
Example from amba2b9
assign sys_safe_err = sys_safe_err0 | sys_safe_err1 | sys_safe_err2
| ...| sys_safe_err19;
assign o_err = ~env_safe_err & ~env_safe_err_happened &
(sys_safe_err | fair_err);
```

o_err can be rewritten:

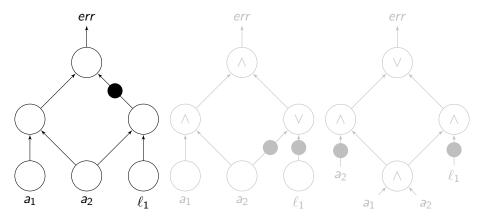
 $(\sim \texttt{env_safe_err \& \sim \texttt{env_safe_err_happened \& fair_err}) | \phi_0 | \ldots | \phi_{19}$ where $\phi_i = \sim \texttt{env_safe_err \& \sim \texttt{env_safe_err_happened \& sys_safe_erri}$

- we define a game G_i for each formula ϕ_i
- to win the "big" game, we must win each "small" game G_i

Decomposition of AIGs

We must recover the structure of the specifications from the AIG

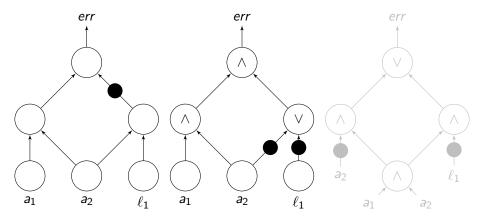
- Explore the graph until encountering a negation
- This corresponds to a disjunction, and it can be distributed over



Decomposition of AIGs

We must recover the structure of the specifications from the AIG

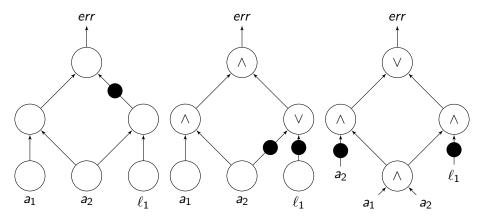
- Explore the graph until encountering a negation
- This corresponds to a disjunction, and it can be distributed over



Decomposition of AIGs

We must recover the structure of the specifications from the AIG

- Explore the graph until encountering a negation
- This corresponds to a disjunction, and it can be distributed over



We obtain a decomposition $err = e_1 \lor e_2 \lor \cdots \lor e_n$

If formula e_i does not depend on all latches, solving the game for e_i can be more efficient

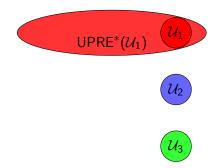
Cone of influence

 $cone(e_i)$: set of variables on which e_i depends (directly or indirectly) \rightarrow can be over-approximated efficiently by exploring the AIG

We consider the game G_i where the error function is given by e_i and we only consider variables in $cone(e_i)$

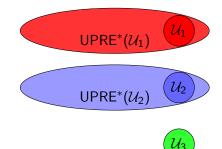
- Compute the winning region of each subgame
- If the intersection does not contain the initial state, then there is no controller
- Otherwise compute the fixpoint starting from the intersection

- Compute the winning region of each subgame
- If the intersection does not contain the initial state, then there is no controller
- Otherwise compute the fixpoint starting from the intersection



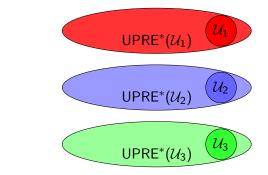
Sr

- Compute the winning region of each subgame
- If the intersection does not contain the initial state, then there is no controller
- Otherwise compute the fixpoint starting from the intersection



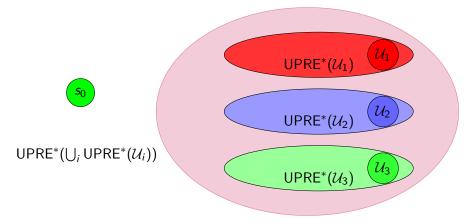
Sr

- Compute the winning region of each subgame
- If the intersection does not contain the initial state, then there is no controller
- Otherwise compute the fixpoint starting from the intersection

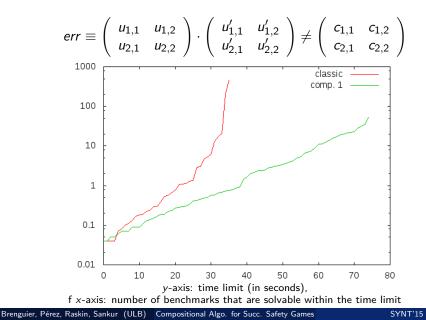


Sr

- Compute the winning region of each subgame
- If the intersection does not contain the initial state, then there is no controller
- Otherwise compute the fixpoint starting from the intersection

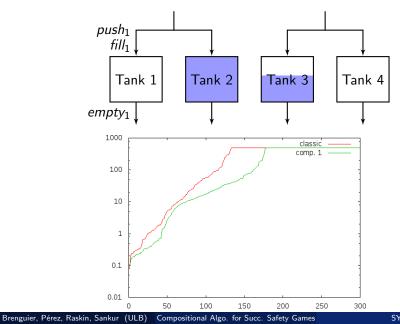


Matrix multiplication benchmarks

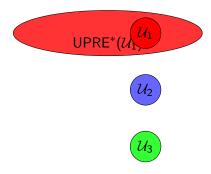


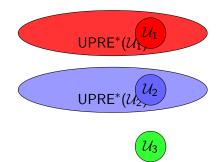
10 / 17

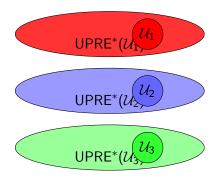
Washing system benchmarks

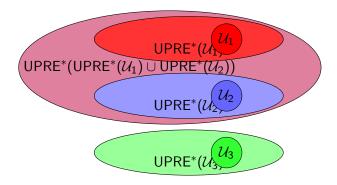


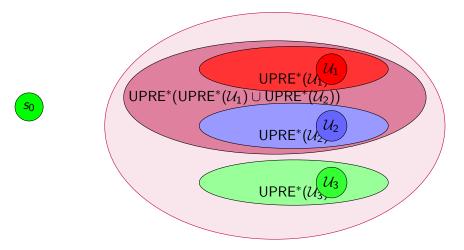
SYNT'15 11 / 17









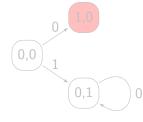


After the computation in each subgame, project the union of unsafe states in the subgames, and repeat until stabilized

 \rightarrow A similar idea was used in [FJR10, Compositional Algorithms for LTL Synthesis] Example:

- $err = (\ell_1 \wedge \ell_2) \vee (\neg \ell_1 \wedge \ell_3)$
- $\ell_1' = c \vee \ell_1;$
- $\ell_2' = \ell_1;$
- $\ell'_3 = \neg \ell_1 \land \neg c;$

Subgame ℓ_1,ℓ_2

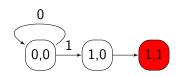


Subgame ℓ_1,ℓ_3

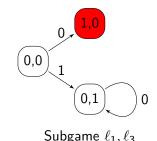
After the computation in each subgame, project the union of unsafe states in the subgames, and repeat until stabilized

 \rightarrow A similar idea was used in [FJR10, Compositional Algorithms for LTL Synthesis] Example:

- $err = (\ell_1 \wedge \ell_2) \vee (\neg \ell_1 \wedge \ell_3)$
- $\ell_1' = c \vee \ell_1;$
- $\ell_2' = \ell_1;$
- $\ell'_3 = \neg \ell_1 \land \neg c;$



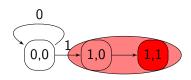
Subgame ℓ_1,ℓ_2



After the computation in each subgame, project the union of unsafe states in the subgames, and repeat until stabilized

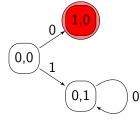
 \rightarrow A similar idea was used in [FJR10, Compositional Algorithms for LTL Synthesis] Example:

- err = $(\ell_1 \wedge \ell_2) \vee (\neg \ell_1 \wedge \ell_3)$
- $\ell_1' = c \vee \ell_1;$
- $\ell'_2 = \ell_1;$
- $\ell'_3 = \neg \ell_1 \land \neg c;$



Subgame ℓ_1, ℓ_2

 $\mathsf{UPRE}_1 \cup \mathsf{UPRE}_2 = \ell_1 \vee \ell_3$

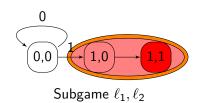


Subgame ℓ_1,ℓ_3

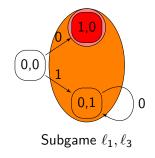
After the computation in each subgame, project the union of unsafe states in the subgames, and repeat until stabilized

 \rightarrow A similar idea was used in [FJR10, Compositional Algorithms for LTL Synthesis] Example:

- err = $(\ell_1 \wedge \ell_2) \vee (\neg \ell_1 \wedge \ell_3)$
- $\ell_1' = c \vee \ell_1;$
- $\ell'_2 = \ell_1;$
- $\ell'_3 = \neg \ell_1 \land \neg c;$



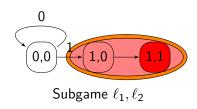
$$\mathsf{UPRE}_1 \cup \mathsf{UPRE}_2 = \ell_1 \vee \ell_3$$



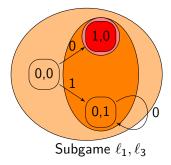
After the computation in each subgame, project the union of unsafe states in the subgames, and repeat until stabilized

 \rightarrow A similar idea was used in [FJR10, Compositional Algorithms for LTL Synthesis] Example:

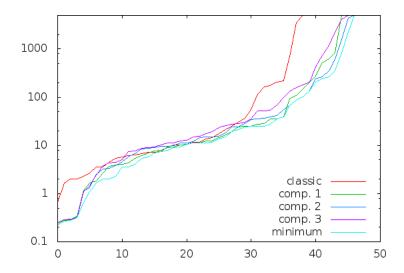
- err = $(\ell_1 \wedge \ell_2) \vee (\neg \ell_1 \wedge \ell_3)$
- $\ell_1' = c \vee \ell_1;$
- $\ell'_2 = \ell_1;$
- $\ell'_3 = \neg \ell_1 \land \neg c;$



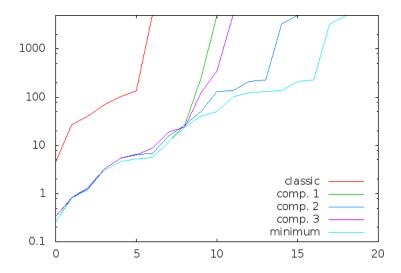
$$\mathsf{UPRE}_1 \cup \mathsf{UPRE}_2 = \ell_1 \vee \ell_3$$



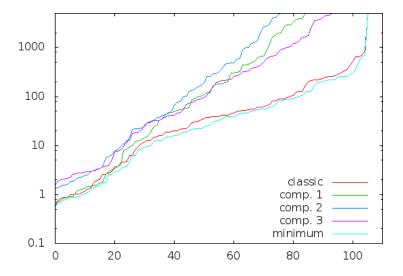
Benchmarks translated from LTL specifications / Load Balancing



Benchmarks translated from LTL specifications / Generalized Buffer



AMBA Benchmarks



- Application of a compositional approach to monolithic AIG specifications
- Can solve problems not handled by the classical algorithm
- Sometimes much more efficient
- Applying the different algorithms in parallel works well in practice

- Application of a compositional approach to monolithic AIG specifications
- Can solve problems not handled by the classical algorithm
- Sometimes much more efficient
- Applying the different algorithms in parallel works well in practice

Thank you